Applied Microbiology and Biotechnology

, Volume 66, Issue 6, pp 696–701 | Cite as

Chemotaxis of Pseudomonas stutzeri OX1 and Burkholderia cepacia G4 toward chlorinated ethenes

Applied Microbial and Cell Physiology

Abstract

The chemotactic responses of Pseudomonas putida F1, Burkholderia cepacia G4, and Pseudomonas stutzeri OX1 were investigated toward toluene, trichloroethylene (TCE), tetrachloroethylene (PCE), cis-1,2-dichloroethylene (cis-DCE), trans-1,2-dichloroethylene (trans-DCE), 1,1-dichloroethylene (1,1-DCE), and vinyl chloride (VC). P. stutzeri OX1 and P. putida F1 were chemotactic toward toluene, PCE, TCE, all DCEs, and VC. B. cepacia G4 was chemotactic toward toluene, PCE, TCE, cis-DCE, 1,1-DCE, and VC. Chemotaxis of P. stutzeri OX1 grown on o-xylene vapors was much stronger than when grown on o-cresol vapors toward some chlorinated ethenes. Expression of toluene-o-xylene monooxygenase (ToMO) from touABCDEF appears to be required for positive chemotaxis attraction, and the attraction is stronger with the touR (ToMO regulatory) gene.

References

  1. Arenghi FLG, Pinti M, Galli E, Barbieri P (1999) Identification of the Pseudomonas stutzeri OX1 toluene-o-xylene monooxygenase regulatory gene (touR) and of its cognate promoter. Appl Environ Microbiol 65:4057–4063PubMedGoogle Scholar
  2. Baggi G, Barbieri P, Galli E, Tollari S (1987) Isolation of a Pseudomonas stutzeri strain that degrades o-xylene. Appl Environ Microbiol 53:2129–2132PubMedGoogle Scholar
  3. Bertoni G, Bolognese F, Galli E, Barbieri P (1996) Cloning of the genes for and characterization of the early stages of toluene and o-xylene catabolism in Pseudomonas stutzeri OX1. Appl Environ Microbiol 62:3704–3711PubMedGoogle Scholar
  4. Bertoni G, Martino M, Galli E, Barbieri P (1998) Analysis of the gene cluster encoding toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1. Appl Environ Microbiol 64:3626–3632PubMedGoogle Scholar
  5. Bolognese F, Lecce CD, Galli E, Barbieri P (1999) Activation and inactivation of Pseudomonas stutzeri methylbenzene catabolism pathways mediated by a transposable element. Appl Environ Microbiol 65:1876–1882PubMedGoogle Scholar
  6. Bradley PM, Chapelle FH (1998) Effect of contaminant concentration on aerobic microbial mineralization of DCE and VC in stream-bed sediments. Environ Sci Technol 32:553–557CrossRefGoogle Scholar
  7. Canada KA, Iwashita S, Shim H, Wood TK (2002) Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation. J Bacteriol 184:344–349CrossRefPubMedGoogle Scholar
  8. Carter SR, Jewell WJ (1993) Biotransformation of tetrachloroethylene by anaerobic attached-films at low temperatures. Water Res 27:607–615CrossRefGoogle Scholar
  9. Chauhan S, Barbieri P, Wood TK (1998) Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1. Appl Environ Microbiol 64:3023–3024PubMedGoogle Scholar
  10. Ditty JL, Harwood CS (2001) Charged amino acids conserved in the aromatic acid/H+ symporter family of permeases are required for 4-hydroxybenzoate transport by PcaK from Pseudomonas putida. J Bacteriol 184:1444–1448Google Scholar
  11. Finette BA, Subramanian V, Gibson DT (1984) Isolation and characterization of Pseudomonas putida PpF1 mutants defective in the toluene dioxygenase enzyme system. J Bacteriol 160:1003–1009PubMedGoogle Scholar
  12. Friedman AM, Long SR, Brown SE, Buikema WJ, Ausubel FM (1982) Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene 18:289–296CrossRefPubMedGoogle Scholar
  13. Franklin FCH, Williams PA (1980) Construction of a partial diploid for the degradative pathway encoded by the TOL plasmid (pwwo) from Pseudomonas putida mt-2: evidence for a positive nature of the regulation by the xy/R gene. Mol Gen Genet 177:321–328PubMedGoogle Scholar
  14. Grimm AC, Harwood CS (1999) NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol 181:3310–3316PubMedGoogle Scholar
  15. Hawkins AC, Harwood CS (2002) Chemotaxis of Ralstonia eutropha JMP134(pJP4) to the herbicide 2,4-dichlorophenoxyacetate. Appl Environ Microbiol 68:968–972CrossRefPubMedGoogle Scholar
  16. Kato J, Shitashiro M, Yamamoto M, Kuroda A, Ikeda T, Takiguchi N, Ohtake H (2001) Chemotaxis by Pseudomonas aeruginosa toward 2,4-dichlorophenoxyacetate and volatile chlorinated aliphatic compounds. 101st general meeting of the American Society for Microbiology, Orlando, Fla., 20–24 May 2001Google Scholar
  17. Lecce CD, Accarino M, Bolognese F, Galli E, Barbieri P (1997) Isolation and metabolic characterization of a Pseudomonas stutzeri mutant able to grow on the three isomers of xylene. Appl Environ Microbiol 63:3279–3281Google Scholar
  18. Marx RB, Aitken MD (2000) Bacterial chemotaxis enhances naphthalene degradation in a heterogeneous aqueous system. Environ Sci Technol 34:3379–3383CrossRefGoogle Scholar
  19. McCarty PL (1997) Breathing with chlorinated solvents. Science 276:1521–1522CrossRefPubMedGoogle Scholar
  20. Nelson MJK, Montgomery SO, O’Neill EJ, Pritchard PH (1986) Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl Environ Microbiol 52:383–384Google Scholar
  21. Parales RE, Harwood CS (2002) Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr Opin Microbiol 5:266–273CrossRefPubMedGoogle Scholar
  22. Parales RE, Ditty JL, Harwood CS (2000) Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl Environ Microbiol 66:4098–4104CrossRefPubMedGoogle Scholar
  23. Ryoo D, Shim H, Canada K, Barbieri P, Wood TK (2000) Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Nat Biotechnol 18:775–778CrossRefPubMedGoogle Scholar
  24. Ryoo D, Shim H, Arenghi FLG, Barbieri P, Wood TK (2001) Tetrachloroethylene, trichloroethylene, and chlorinated phenols induce toluene-o-monooxygenase activity in Pseudomonas stutzeri OX1. Appl Microbiol Biotechnol 56:545–549CrossRefPubMedGoogle Scholar
  25. Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248CrossRefPubMedGoogle Scholar
  26. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  27. Shields MS, Francesconi SC (1996) Microbial degradation of trichloroethylene, dichloroethylenes, and aromatic pollutants. US Patent 5,543,317Google Scholar
  28. Shields MS, Montgomery SO, Chapman PJ, Cuskey SM, Pritchard PH (1989) Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4. Appl Environ Microbiol 55:1624–1629Google Scholar
  29. Shields MS, Reagin MJ, Gerger RR, Somerville C, Schaubhut R, Campbell R, Hu-Primmer J (1994) Constitutive degradation of trichloroethylene by an altered bacterium in a gas-phase bioreactor. In: Ong SK (ed) Bioremediation of chlorinated and polycyclic aromatic hydrocarbon compounds. Lewis, Boca Raton, pp 50–65Google Scholar
  30. Shim H, Wood TK (2000) Aerobic degradation of mixtures of chlorinated aliphatics by cloned toluene-o-xylene monooxygenase and toluene o-monooxygenase in resting cells. Biotechnol Bioeng 70:693–698CrossRefPubMedGoogle Scholar
  31. Yu HS, Alam M (1997) An agarose-in-plug bridge method to study chemotaxis in the Archaeon Halobacterium salinarum. FEMS Microbiol Lett 156:265–269CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Gönül Vardar
    • 1
  • Paola Barbieri
    • 2
  • Thomas K. Wood
    • 1
  1. 1.Departments of Chemical Engineering and Molecular and Cell BiologyUniversity of ConnecticutStorrsUSA
  2. 2.Dipartimento di Biologia Strutturale e FunzionaleUniversità dell’InsubriaVareseItaly

Personalised recommendations