Applied Microbiology and Biotechnology

, Volume 65, Issue 6, pp 635–648 | Cite as

Valuable products from biotechnology of microalgae

Mini-Review

Abstract

The biotechnology of microalgae has gained considerable importance in recent decades. Applications range from simple biomass production for food and feed to valuable products for ecological applications. For most of these applications, the market is still developing and the biotechnological use of microalgae will extend into new areas. Considering the enormous biodiversity of microalgae and recent developments in genetic engineering, this group of organisms represents one of the most promising sources for new products and applications. With the development of sophisticated culture and screening techniques, microalgal biotechnology can already meet the high demands of both the food and pharmaceutical industries.

References

  1. Anagnostidis K, Komárek JA (1985) Modern approach to the classification system of cyanophytes 1—introduction. Arch Hydrobiol Suppl 71:291–302Google Scholar
  2. Anagnostidis K, Komárek JA (1988) Modern approach to the classification systems of cyanophytes 3—oscillatorales. Arch Hydrobiol Suppl 80:327–472Google Scholar
  3. Anagnostidis K, Komárek JA (1990) Modern approach to the classification systems of cyanophytes 5—stigonematales. Algol Stud 59:1–73Google Scholar
  4. Anon (2000) Guide de l’algue alimentaire. CEVA, Paris, p 33Google Scholar
  5. Apt KA, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226CrossRefGoogle Scholar
  6. Belay A (1993) Current knowledge on potential health benefits of Spirulina platensis. J Appl Phycol 5:235–240Google Scholar
  7. Blanchot J, Rodier M (1996) Picophytoplankton abundance and biomass in the western tropical Pacific Ocean during the 1992 El Niño year: results from flow cytometry. Deep Sea Res 43:877–895CrossRefGoogle Scholar
  8. Borowitzka MA (1995) Microalgae as source of pharmaceuticals and other biologically active compounds. J Appl Algol 7:3–15Google Scholar
  9. Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401CrossRefGoogle Scholar
  10. Borowitzka MA (1998) Company news. J Appl Phycol 10:417CrossRefGoogle Scholar
  11. Borowitzka MA, Borowitzka LJ (1988) Micro-algal biotechnology. Cambridge University Press, CambridgeGoogle Scholar
  12. Boussiba S, Wu X-Q, Ben-Dov E, Zarka A, Zaritsky A (2000) Nitrogen-fixing cyanobacteria as gene delivery system for expressing mosquitocidal toxins of Bacillus thuringiensis ssp. israelensis. J Appl Phycol 12:461–467CrossRefGoogle Scholar
  13. Chungjatupornchai W (1990) Expression of the mosquitocidal-protein genes of Bacillus thurigiensis ssp. israelensis and the herbicide-resistance gene Bar in Synechocystis PCC6803. Curr Microbiol 21:283–288Google Scholar
  14. Cohen Z (1999) Chemicals from microalgae. Taylor & Francis, LondonGoogle Scholar
  15. Critchley T, Ohno M (1998) Seaweed resources of the world. JICA, YokosukaGoogle Scholar
  16. De Luca P, Masacchio A, Taddei R (1981) Acidophilic algae from the fumaroles of Mount Lawu (Java) locus classius of Cyanidium caldarium Geitler. G Bot Ital 115:1–9PubMedGoogle Scholar
  17. De Pauw N, Persoone G (1988) Micro-algae for aquaculture, micro-algal biotechnology. In: Borowitzka MA, Borowitzka LJ (eds) Cambridge University Press, Cambridge, pp 197–221Google Scholar
  18. Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S, Gerday (1996) Enzymes from psychrophilic organisms, C. FEMS Microbiol Rev 18:189–202Google Scholar
  19. Gimmler H, Degenhardt B (2001) In: Rai LC, Gaur JP (eds) Alkaliphilic and alkali-tolerant algae, algal adaptation to environmental stresses. Springer, Berlin Heidelberg New YorkGoogle Scholar
  20. Gounot AM (1986) Psychrophilic and psychrotrophic microorganisms. Experientia 42:1192–1197PubMedGoogle Scholar
  21. Grobbelaar JU, Kroon BMA, Whitton BA (1996) Opportunities from micro- and macroalgae. J Appl Phycol 8:261–464Google Scholar
  22. Gross W, Schnarrenberger C (1995) Heterotrophic growth of two strains of the acidothermophilic red alga Galderia sulphuria. Plant Cell Physiol 4:633–638Google Scholar
  23. Hirata T, Tanaka M, Ooike M, Tsunomura T, Sakaguchi M (2000) Antioxidant activities of phycocyanobilin prepared from S. platensis. J Appl Phycol 12:435–439CrossRefGoogle Scholar
  24. Kindle KL, Richards KL, Stern DB (1990) Engineering the chloroplast genome: techniques and capabilities for chloroplast transformation in Clamydomonas reinhardtii. Proc Natl Acad Sci USA 88:1721–1725Google Scholar
  25. Komárek JA, Anagnostidis K (1986) Modern approach to the classification systems of cyanophytes 2-Chroococales. Arch Hydrobiol Suppl 73:157–226Google Scholar
  26. Komárek JA, Anagnostidis K (1989) Modern approach to the classification systems of cyanophytes 4—Nostocales. Arch Hydrobiol Suppl 82:247–345Google Scholar
  27. Kretschmer P, Pulz O, Gudin C, Semenenko V (1995). Biotechnology of Microalgae. (Proceedings of the second European workshop) IGV Institute for Cereal Processing, Potsdam-RehbrückeGoogle Scholar
  28. Laing I, Ayala F (1990) In: Akatsuka I (ed) Commercial mass culture techniques for producing microalgae, introduction to applied phycology. SPB, The Hague, pp 447–477Google Scholar
  29. Lavens P, Sorgeloos P (1996) Manual on the production and use of life food for aquaculture. FAO Fish Tech Pap 361:7–42Google Scholar
  30. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167CrossRefPubMedGoogle Scholar
  31. Luckas B (1995) Selective detection of algal toxins from shellfishes. Chem Unserer Zeit 29:68–75Google Scholar
  32. Masjuk NP (1973) Morphology, taxonomy, ecology, geographical distribution and utilization of Dunaliella (in Russian). Naukowa, KievGoogle Scholar
  33. Metting FB (1996) Biodiversity and application of microalgae. J Ind Microbiol 17:477–489Google Scholar
  34. Muller-Feuga A, Moal J, Kaas R (2003) The microalgae for aquaculture. In: Stottrup JG, McEvoy LA (eds) Life feeds in marine aquaculture. Blackwell, OxfordGoogle Scholar
  35. Musafarov AM, Taubayev TT (1974). Chlorella (in Russian). FAN, TashkentCrossRefPubMedGoogle Scholar
  36. Namikoshi M (1996) Bioactive compounds produced by cyanobacteria. J Int Microbiol Biotechnol 17:373–384Google Scholar
  37. New MB (1999) Global aquaculture: current trends and challenges for 21st century. World Aquacult 3:8–14Google Scholar
  38. Norton TA, Melkonian M, Andersen RA (1996) Algal biodiversity. Phycologia 35:308–326Google Scholar
  39. Ördög V, Szigeti J, Pulz O (1996). Proceedings of the conference on progress in plant sciences from plant breeding to growth regulation. Pannon University, MosonmagyarovarGoogle Scholar
  40. Osinga R, Tramper J, Burgess JG, Wijffels RH (1999) Marine bioprocess engineering. Proc Prog Ind Microbiol 35:1–413Google Scholar
  41. Piccardi R, Materassi R, Tredici M (1999) Algae and human affairs in the 21st century. (Abstr Int Conf Appl Algol) Universita degli Studi di Firenze, FirenzeGoogle Scholar
  42. Pulz O (2001) Photobioreactors: production systems of phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293CrossRefPubMedGoogle Scholar
  43. Pulz O, Scheibenbogen K, Gross W (2000) Biotechnology with cyanobacteria and microalgae. In: Rehm H-J, Reed G (eds) Biotechnology, vol 10, 2nd edn. Wiley-VCH, Weinheim, pp 105–136Google Scholar
  44. Radmer RJ (1996) Algal diversity and commercial algal products. Bioscience 46:263–270Google Scholar
  45. Ragan MA, Chapman DJA (1978) A biochemical phylogeny of the protists. Academic, New YorkGoogle Scholar
  46. Richmond A (2004) Handbook of microalgal culture. Blackwell, OxfordGoogle Scholar
  47. Schreckenbach K, Thürmer C, Loest K, Träger G, Hahlweg R (2001) Der Einfluss von Mikroalgen (Spirulina platensis) in Trockenmischfutter auf Karpfen (Cyprinus carpio). Fischer Teichwirt 1:10–13Google Scholar
  48. Siegelman HW, Guillard RRL (1971) Large-scale culture of algae. In: Colowick SP, Kaplan NO (eds) Methods Enzymol, vol 23. Academic, New York, pp 110–115Google Scholar
  49. Sirenko LA, Kirpenko YA, Kirpenko NI (1999) Influence of metabolites of certain algae on human and animal cell cultures, Int J Algae 1:122–126Google Scholar
  50. Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bertram J (eds) Toxic cyanobacteria in water: a guide to public health significance, monitoring and management. Spon, London, pp 41–111Google Scholar
  51. Skulberg OM (2000) Microalgae as a source of bioactive molecules—experience from cyanophyte research. J Appl Phycol 12:341–348CrossRefGoogle Scholar
  52. Spektorova L, Creswell RL, Vaughan D (1997) Closed tubular cultivators. World Aquacult 6:39–43Google Scholar
  53. Weber M, Grimmer A (2001) Lohnt sich der Einsatz von Grünalgen im Ferkelfutter? Landwirtsch Wochenbl Rheinland 2001:34Google Scholar
  54. Xie J, Zhang Y, Li Y, Wang Y (2001) Mixotrophic cultivation of Platymonas subcordiformis. J Appl Phycol 13:343–347CrossRefGoogle Scholar
  55. Zaslavskaia LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt K (2001) Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292:2073–2075CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.IGV Institut für Getreideverarbeitung GmbHNuthetalGermany
  2. 2.Institut für BiologieFreie Universität BerlinBerlinGermany

Personalised recommendations