Applied Microbiology and Biotechnology

, Volume 65, Issue 4, pp 414–418 | Cite as

Inactivation of pycA, encoding pyruvate carboxylase activity, increases poly-β-hydroxybutyrate accumulation in Azotobacter vinelandii on solid medium

Applied Genetics and Molecular Biotechnology

Abstract

Strain AJ1678, an Azotobacter vinelandii mutant overproducing the storage polymer poly-β-hydroxybutyrate (PHB) in solid but not liquid complex medium with sucrose, was isolated after mini-Tn5 mutagenesis of strain UW136. Cloning and nucleotide sequencing of the affected locus led to identification of pycA, encoding a protein with high identity to the biotin carboxylase subunit of pyruvate carboxylase enzyme (PYC). A gene (pycB) whose product is similar to the biotin-carrying subunit of PYC is present immediately downstream from pycA. An assay of pyruvate carboxylase activity and an avidin-blot analysis confirmed that pycA and pycB encode the two subunits of this enzyme. In many organisms, PYC catalyzes ATP-dependent carboxylation of pyruvate to generate oxaloacetate and is responsible for replenishing oxaloacetate for continued operation of the tricarboxylic acid cycle. We propose that the pycA mutation causes a slow-down in the TCA cycle activity due to a low oxaloacetate concentration, resulting in a higher availability of acetyl-CoA for the synthesis of poly-β-hydroxybutyrate.

References

  1. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472PubMedGoogle Scholar
  2. Bali A, Blanco G, Hill S, Kennedy K (1992) Excretion of ammonium by a nifL mutant of Azotobacter vinelandii fixing nitrogen. Appl Environ Microbiol 58:1711–1718PubMedGoogle Scholar
  3. Bishop PE, Brill WJ (1977) Genetic analysis of Azotobacter vinelandii mutant strains unable to fix nitrogen. J Bacteriol 130:954–956PubMedGoogle Scholar
  4. De Lorenzo V, Herrero M, Jakubzik V, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572PubMedGoogle Scholar
  5. Gokarn RR, Evans JD, Walker JR, Martin SA, Eiteman MA, Altman E (2001) The physiological effects and metabolic alterations caused by the expression of Rhizobium etli pyruvate carboxylase in Escherichia coli. Appl Microbiol Biotechnol 56:188–195CrossRefPubMedGoogle Scholar
  6. Goss JA, Cohen ND, Utter MF (1981) Characterization of the subunit structure of pyruvate carboxylase from Pseudomonas citronellolis. J Biol Chem 256:11819–11825PubMedGoogle Scholar
  7. Jitrapakdee S, Wallace JC (1999) Structure, function and regulation of pyruvate carboxylase. Biochem J 340:1–16PubMedGoogle Scholar
  8. Kennedy C, Gamal R, Humphrey R, Ramos J, Brigle K, Dean D (1986) The nifH, nifM and nifN genes of Azotobacter vinelandii: characterization by Tn5 mutagenesis and isolation from pLARF1 gene banks. Mol Gen Genet 205:318–325Google Scholar
  9. Law JH, Slepecky RA (1961) Assay of poly-β-hydroxybutyric acid. J Bacteriol 82:33–36Google Scholar
  10. Liao CL, Atkinson DE (1971) Regulation at the phosphoenolpyruvate branchpoint in Azotobacter vinelandii: phosphoenolpyruvate carboxylase. J Bacteriol 106:31–36PubMedGoogle Scholar
  11. Manchak J, Page WJ (1994) Control of polyhydroxyalkanoate synthesis in Azotobacter vinelandii strain UWD. Microbiology 140:953–963Google Scholar
  12. Mejía-Ruíz H, Moreno S, Guzmán J, Nájera R, León R, Soberón-Chavez G, Espín G (1997) Isolation and characterization of an Azotobacter vinelandii algK mutant. FEMS Microbiol Lett 156:101–106PubMedGoogle Scholar
  13. Mukhopadhyay B, Stoddard SF, Wolfe RS (1998) Purification, regulation and molecular and biochemical characterization of pyruvate carboxylase from Methanobacterium thermoautotrophicum Strain ΔH. J Biol Chem 273:5155–5166CrossRefPubMedGoogle Scholar
  14. Mukhopadhyay B, Patel VJ, Wolfe RS (2000) A stable archeal pyruvate carboxylase from the hyperthermophile Methanococus jannaschii. Arch Microbiol 174:406–414CrossRefPubMedGoogle Scholar
  15. Mukhopadhyay B, Purwantini E, Kreder CL, Wolfe RS (2001) Oxalacetate synthesis in the methanarchaeon Methanosarcina barkeri: pyruvate carboxylase genes and a putative Escherichia coli-type bifunctional biotin protein ligase gene (bpl/birA) exhibit a unique organization. J Bacteriol 183:3804–3810CrossRefPubMedGoogle Scholar
  16. Nelson K, Paulsen I, Weinel C, Dodson R, Hilbert H, Fouts D, Gill S, Pop M, Martins Dos Santos V, Holmes M, Brinkac L, Beanan M, DeBoy R, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen J, Timmis K, Duesterhoft A, Tummler B, Fraser C (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808CrossRefPubMedGoogle Scholar
  17. Omata T, Gohta S, Takahashi Y, Harano Y, and Maeda S (2001) Involvement of a CbbR homolog in low CO2-induced activation of the bicarbonate transporter operon in cyanobacteria. J Bacteriol 183:1891–1898PubMedGoogle Scholar
  18. Peters-Wendisch PG, Kreutzer C, Kalinowski J, Pátek M, Sahm H, Eikmanns BJ (1998) Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiology 144:915–927PubMedGoogle Scholar
  19. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  20. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedGoogle Scholar
  21. Scrutton MC, Taylor BL (1974) Isolation and characterization of pyruvate carboxylase from Azotobacter vinelandii OP. Arch Biochem Biophys 164:641–654PubMedGoogle Scholar
  22. Segura D, Espín G (1998) Mutational inactivation of a gene homologous to Escherichia coli ptsP affects poly-β-hydroxybutyrate accumulation and nitrogen fixation in Azotobacter vinelandii. J Bacteriol 180:4790–4798PubMedGoogle Scholar
  23. Segura D, Guzmán J, Espín G (2003) Azotobacter vinelandii mutants that overproduce poly-beta-hydroxybutyrate or alginate. Appl Microbiol Biotechnol 63:159–163CrossRefGoogle Scholar
  24. Senior PJ, Dawes EA (1973) The regulation of poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochem J 134:225–238PubMedGoogle Scholar
  25. Senior PJ, Beech GA, Ritchie GA, Dawes EA (1972) The role of oxygen limitation in the formation of poly-β-hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii. Biochem J 128:1193–1201PubMedGoogle Scholar
  26. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964PubMedGoogle Scholar
  27. Windhovel U, Bowien B (1991) Identification of cfxR, an activator gene of autotrophic CO2 fixation in Alcaligenes eutrophus. Mol Microbiol 5:2695–2705PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Departamento de Microbiología Molecular, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico

Personalised recommendations