Applied Microbiology and Biotechnology

, Volume 64, Issue 5, pp 659–664 | Cite as

A new non-aerated illuminated packed-column reactor for the development of sulfide-oxidizing biofilms

  • I. Ferrera
  • O. Sánchez
  • J. Mas
Original Paper


This paper describes an illuminated reactor that allows the spontaneous development of biofilms aimed at the treatment of sulfide-containing streams. The reactor operates as a sulfidostat and is composed of an illuminated packed-column, in which microorganisms are exposed to constant low substrate concentrations, thereby avoiding inhibition due to high sulfide concentrations. The control system allows highly polluted streams to be oxidized by the microbial biofilm while ensuring the quality of the effluent produced. Both monospecies and multispecies biofilms have been developed. Biofilms undergo changes in light irradiance and sulfide load while providing a consistent reduction of the sulfide levels, down to micromolar concentrations. Both types of biofilm developed differ from stirred reactors in that their specific activities are lower, constituting systems with a slow dynamic behavior and, therefore, they are less sensitive to sudden disturbances.


Sulfide Hydrogen Sulfide Sulfide Concentration Sulfide Oxidation Green Sulfur Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grants BOS2000-0139 and REN2000-0332-P4 from the Ministerio de Ciencia y Tecnología to J.M. I.F. was supported by a FPI-FI fellowship from the Generalitat de Catalunya. We thank Dr. Carles Borrego from the University of Girona for providing the strain of C. limicola used in this work.


  1. Brown ML, Gauthier JJ (1993) Cell density and growth phase as factors in the resistance of a biofilm of Pseudomonas aeruginosa (ATCC 27853) to iodine. Appl Environ Microbiol 59: 2320–2322Google Scholar
  2. Buisman CJ, Geraats BG, Ijspeert P, Lettinga G (1990) Optimization of sulphur production in a biotechnological sulphide-removing reactor. Biotechnol Bioeng 35:50–56Google Scholar
  3. Canstein H von, Kelly S, Li Y, Wagner-Döbler I (2002) Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions. Appl Environ Microbiol 68:2829–2837CrossRefPubMedGoogle Scholar
  4. Canter-Lund H, Lund JWG (1995) Freshwater algae. Their microscopic world explored. Biopress, BristolGoogle Scholar
  5. Cohen Y, Gurevitz M (1999) The Cyanobacteria: ecology, physiology, and molecular genetics. In: Dworkin, et al (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, Berlin Heidelberg New York,
  6. Cork DJ, Garunas R, Sajad A (1983) Chlorobium limicola forma thiosulfatophilum: biocatalyst in the production of sulfur and organic carbon from a gas stream containing H2S and CO2. Appl Environ Microbiol 45:913–918Google Scholar
  7. Ferrera I, Massana R, Casamayor EO, Balagué V, Sánchez O, Pedrós-Alió C, Mas J (2004) High-diversty biofilm for the oxidation of sulfide-containing effluents. Appl Microbiol Biotechnol, DOI 10.1007/s00253-004-1582-xGoogle Scholar
  8. Guerrero R, Pedrós-Alió C, Esteve I, Mas J (1987) Communities of phototrophic sulfur bacteria in lakes of the Spanish Mediterranean region. In: Lindholm T (ed) Ecology of photosynthetic prokaryotes. Åbo Academy Press, Turku, pp 125–151Google Scholar
  9. Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. Methods Microbiol 5B:209–234Google Scholar
  10. Imhoff JF (2003) The Chromatiaceae. In: Dworkin, et al (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn, Springer, Berlin Heidelberg New York,
  11. Janssen AJH, Ma SC, Lens P, Lettinga G (1997) Performance of a sulfide-oxidizing expanded-bed reactor supplied with dissolved oxygen. Biotechnol Bioeng 53:32–40CrossRefGoogle Scholar
  12. Jensen AB, Webb C (1995) Treatment of H2S-containing gases: a review of microbiological alternatives. Enzyme Microb Technol 17:2–10CrossRefGoogle Scholar
  13. Kirchman D, Sigda J, Kapuscinski R, Mitchell R (1982) Statistical analysis of the direct count method for enumerating bacteria. Appl Environ Microbiol 44:376–382PubMedGoogle Scholar
  14. Kobayashi HA, Stenstrom M, Mah RA (1983) Use of photosynthetic bacteria for hydrogen sulfide removal from anaerobic waste treatment effluent. Water Res 17:579–587CrossRefGoogle Scholar
  15. Overmann J (2000) The Chlorobiaceae. In: Dworkin, et al (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, Berlin Heidelberg New York,
  16. Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black sea. Limnol Oceanogr 37:150–155Google Scholar
  17. Pachmayr F (1960) Vorkomen und Bestimmung von Schwefelverbindungen in Mineralwasser. PhD thesis, University of Munich, MunichGoogle Scholar
  18. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948Google Scholar
  19. Sánchez O, Van Gemerden H, Mas J (1996) Description of a redox-controlled sulfidostat for the growth of sulfide-oxidizing phototrophs. Appl Environ Microbiol 60:3640–3645Google Scholar
  20. Sánchez O, Van Gemerden H, Mas J (1998) Utilization of reducing power in light-limited cultures of Chromatium vinosum DSM 185. Arch Microbiol 170:411–417CrossRefPubMedGoogle Scholar
  21. Schram A, Amann R (1998) In situ structure and function analysis of biofilms. In: Märkl H, Stegmann R (eds) Technik anaerober Prozessw. Dechema, Frankfurt am Main, pp 45–54Google Scholar
  22. Stal LJ, Van Gemerden H, Krumbein WE (1984) The simultaneous assay of chlorophyll and bacteriochlorophyll in natural microbial communities. J Microbiol Methods 2:295–306Google Scholar
  23. Sublette KL, Sylvester ND (1987) Oxidation of hydrogen sulfide by continuous cultures of Thiobacillus denitrificans. Biotechnol Bioeng 29:753–758Google Scholar
  24. Trüper HG, Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae. 1. Quantitative measurements on growing cells of Chromatium okenii. Antonie Van Leeuwenhoek 30:225–238PubMedGoogle Scholar
  25. Van Gemerden H (1984) The sulfide affinity of phototrophic bacteria in relation to the location of elemental sulfur. Arch Microbiol 139:289–294Google Scholar
  26. Van Gemerden H, Beeftink HH (1978) Specific rates of substrate oxidation and product formation in autotrophically growing Chromatium vinosum cultures. Arch Microbiol 119:932–943Google Scholar
  27. Van Gemerden H, Mas J (1995) Ecology of phototrophic sulphur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 49–85Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations