Applied Microbiology and Biotechnology

, Volume 64, Issue 6, pp 763–781 | Cite as

Bacterial lipases: an overview of production, purification and biochemical properties

  • R. GuptaEmail author
  • N. Gupta
  • P. Rathi


Lipases, triacylglycerol hydrolases, are an important group of biotechnologically relevant enzymes and they find immense applications in food, dairy, detergent and pharmaceutical industries. Lipases are by and large produced from microbes and specifically bacterial lipases play a vital role in commercial ventures. Some important lipase-producing bacterial genera include Bacillus, Pseudomonas and Burkholderia. Lipases are generally produced on lipidic carbon, such as oils, fatty acids, glycerol or tweens in the presence of an organic nitrogen source. Bacterial lipases are mostly extracellular and are produced by submerged fermentation. The enzyme is most commonly purified by hydrophobic interaction chromatography, in addition to some modern approaches such as reverse micellar and aqueous two-phase systems. Most lipases can act in a wide range of pH and temperature, though alkaline bacterial lipases are more common. Lipases are serine hydrolases and have high stability in organic solvents. Besides these, some lipases exhibit chemo-, regio- and enantioselectivity. The latest trend in lipase research is the development of novel and improved lipases through molecular approaches such as directed evolution and exploring natural communities by the metagenomic approach.


Lipase Response Surface Methodology Reversed Micelle Burkholderia Directed Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the Department of Biotechnology, New Delhi (Government of India) for financial assistance through a project on lipase from Burkholderia sp. (Sanction No. BT/PR2742/PID/04/127/2001).


  1. Abdel-Fattah YR (2002) Optimization of thermostable lipase production from a thermophilic Geobacillus sp. using Box–Behnken experimental design. Biotechnol Lett 24:1217–1222CrossRefGoogle Scholar
  2. Abdou AM (2003) Purification and partial characterization of psychrotrophic Serratia marcescens lipase. J Dairy Sci 86:127–132PubMedGoogle Scholar
  3. Aires-Barros MR, Taipa MA, Cabral JMS (1994) Isolation and purification of lipases. In: Wooley P, Petersen SB (eds) Lipases—their structure, biochemistry and application. Cambridge University Press, Cambridge, pp 243–270Google Scholar
  4. Albertsson PA, Johansson G, Tjerneld F (1990) Aqueous two-phase separations. In: Asenjo JA (ed) Separation processes in biotechnology. Dekker, New York, pp 287–317Google Scholar
  5. Andersson RE, Hedlund GB, Jensson V (1979) Thermal inactivation of a heat-resistant lipase produced by the psychrotrophic bacterium Pseudomonas fluorescens. J Dairy Sci 62:361–367PubMedGoogle Scholar
  6. Angultra J, Rodrigue Z, Aparicio LB, Naharrao G (1993) Purification, gene cloning, amino acid sequence analysis and expression of an extracellular lipase from an Aeromonas hydrophila human isolate. Appl Environ Microbiol 59:2411–2417PubMedGoogle Scholar
  7. Antonian E (1988) Recent advances in the purification, characterization and structure determination of lipases. Lipids 23:1101–1106PubMedGoogle Scholar
  8. Arnold FH (1996) Directed evolution: creating biocatalysts for the future. Chem Eng Sci 51:5091–5102Google Scholar
  9. Arpigny JL, Jaeger K-E (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183PubMedGoogle Scholar
  10. Bandmann N, Collet E, Leijen J, Uhlen M, Veide A, Nygren PA (2000) Genetic engineering of the Fusarium solani pisi lipase cutinase for enhanced partitioning in PEG-phosphate aqueous two-phase systems. J Biotechnol 79:161–172CrossRefPubMedGoogle Scholar
  11. Barbaro SE, Trevors JT, Inniss WE (2001) Effects of low temperature, cold shock, and various carbon sources on esterase and lipase activities and exopolysaccharide production by a psychrotrophic Acinetobacter sp. Can J Microbiol 47:194–205CrossRefPubMedGoogle Scholar
  12. Beisson F, Tiss A, Rivière C, Verger R (2000) Methods for lipase detection and assay: a critical review. Eur J Lipid Sci Technol 133–153Google Scholar
  13. Bell PJ, Sunna A, Gibbs MD, Curach NC, Nevalainen H, Berquist PL (2002) Prospecting for novel lipase genes using PCR. Microbiology 148:2283–2291PubMedGoogle Scholar
  14. Bezborodov AM, Davranov KD, Akhmedova A (1985) Lipase inhibitor in Rhizopus microsporus cultures. In: Kulaev IS, Dawes EA, Tempest DW (eds) FEMS Symposium 23. Academic Press, London, pp 145–149Google Scholar
  15. Bompensieri S, Gonzalez R, Kok R, Miranda MV, Nutgeren-Eoodzant I, Hellingwerf KJ, Cascone O, Nudel BC (1996) Purification of a lipase from Acinetobacter calcoaceticus AAC323-1 by hydrophobic-interaction methods. Biotechnol Appl Biochem 23:77–81PubMedGoogle Scholar
  16. Borgstrom B, Donner J (1976) Interactions of pancreatic lipase with bile salts and dodecylsulfate. J Lipid Res 17:491–497PubMedGoogle Scholar
  17. Bradoo S, Saxena RK, Gupta R (1999) Two acidothermotolerant lipases from new variants of Bacillus spp. World J Microbiol Biotechnol 15:87–91CrossRefGoogle Scholar
  18. Bradoo S, Rathi P, Saxena RK, Gupta R (2002) Microwave-assisted rapid characterization of lipase selectivities. J Biochem Biophys Methods 51:115–120CrossRefPubMedGoogle Scholar
  19. Brune AK, Gotz F (1992) Degradation of lipids by bacterial lipases. In: Winkelman G (ed) Microbial degradation of natural products. VCH, Weinhein, pp 243–266Google Scholar
  20. Cambau B, Klibanov AM (1984) Preparative production of optically active esters and alcohols wing esterase-catalyzed stereospecific trans-esterification in organic media. J Am Chem Soc 106:2687–2692Google Scholar
  21. Castro MJM, Cabral JMS (1988) Reversed micelles in biotechnological processes. Biotechol Adv 6:151–167CrossRefGoogle Scholar
  22. Davranov K (1994) Microbial lipases in biotechnology (review). Appl Biochem Microbiol 30:527–534Google Scholar
  23. Dharmsthiti S, Kuhasuntisuk B (1998) Lipase from Pseudomonas aeruginosa LP602: biochemical properties and application for wastewater treatment. J Ind Microbiol Biotechnol 21:75–80Google Scholar
  24. Dharmsthiti S, Luchai S (1999) Production, purification and characterization of thermophilic lipase from Bacillus sp. THL027. FEMS Microbiol Lett 179:241–246CrossRefPubMedGoogle Scholar
  25. Dharmsthiti S, Pratuangdejkul J, Theeragool GT, Luchai S (1998) Lipase activity and gene cloning of Acinetobacter calcoaceticus LP009. J Gen Appl Microbiol 44:139–145PubMedGoogle Scholar
  26. Dong H, Gao S, Han S, Cao S (1999) Purification and characterization of a Pseudomonas sp. lipase and its properties in non-aqueous media. Appl Microbiol Biotechnol 30:251–256Google Scholar
  27. Dunhaupt A, Lang S, Wagner F (1991) Properties and partial purification of a Pseudomonas cepacia lipase. In: Alberghina L, Schmid RD, Verger R (eds) Lipases: structure, mechanism and genetic engineering. (GBF monographs, vol 16) VCH, Weinheim, pp 389–392Google Scholar
  28. Finkelstein AE, Strawich ES, Sonnino S (1970) Characterization and partial purification of a lipase from Pseudomonas aeruginosa. Biochim Biophys Acta 206:380–391CrossRefPubMedGoogle Scholar
  29. Gargouri Y, Julian R, Sugihara A, Verger R, Sarda L (1984) Inhibition of pancreatic and microbial lipase by proteins. Biochim Biophys Acta 795:326–331CrossRefPubMedGoogle Scholar
  30. Ghanem EH, Al-Sayeed HA, Saleh KM (2000) An alkalophilic thermostable lipase produced by a new isolate of Bacillus alcalophilus. World J Microbiol Biotechnol 16:459–464CrossRefGoogle Scholar
  31. Ghosh PK, Saxena RK, Gupta R, Yadav RP, Davidson WS (1996) Microbial lipases: production and applications. Sci Prog 79:119–157PubMedGoogle Scholar
  32. Gilbert EJ, Drozd JW, Jones CW (1991a) Physiological regulation and optimization of lipase activity in Pseudomonas aeruginosa EF2. J Gen Microbiol 137:2215–2221PubMedGoogle Scholar
  33. Gilbert EJ, Cornish A, Jones CW (1991b) Purification and properties of extracellular lipase from Pseudomonas aeruginosa EF2. J Gen Microbiol 137:2223–2229PubMedGoogle Scholar
  34. Godfrey T, West S (1996) The application of enzymes in industry. In: Godfrey T, Reichelt J (eds) Industrial enzymology, 2nd edn. The Nature Press, New York, p. 512Google Scholar
  35. Godtfredsen SE (1990) Microbial lipases. In: Fogarty WM, Kelly ET (eds) Microbial enzymes and biotechnology, Elsevier, Amsterdam, pp 255–274Google Scholar
  36. Gupta JK, Soni SK (2000) Industrial uses of enzymes. J Punjab Acad Sci 2:75–80Google Scholar
  37. Gupta R, Bradoo S, Saxena RK (1999) Aqueous two-phase systems: an attractive technology for downstream processing of biomolecules. Curr Sci 77:520–523Google Scholar
  38. Gupta R, Rathi P, Gupta N, Bradoo S (2003) Lipase assays for conventional and molecular screening: an overview. Biotechnol Appl Biochem 37:63–71CrossRefPubMedGoogle Scholar
  39. Harlow E, Lane D (1988) Antibiodies. Cold Spring Harbor Publications, Cold Spring Harbor, N.Y.Google Scholar
  40. Hassing GS (1971) Partial purification and some properties of a lipase from Corynebacterium acne. Biochem Biophys Acta 242:331PubMedGoogle Scholar
  41. Henne A, Schmitez RA, Bomeke M, Gottschalk G, Daniel R (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol 66:3113–3116PubMedGoogle Scholar
  42. Hirohara H, Mitsuda S, Ando E, Komaki R (1985) Enzymatic preparation of optically active alcohols related to synthetic pyrethroid insecticides. Stud Org Chem 22:119–134Google Scholar
  43. Hong MC, Chang MC (1998) Purification and characterization of an alkaline lipase from a newly isolated Acinetobacter radioresistens CMC-1. Biotechnol Lett 20:1027–1029CrossRefGoogle Scholar
  44. Horiuti Y, Imamura S (1977) Purification of lipase from Chromobacterium viscosum by chromatography on palmitoyl cellulose. J Biochem 81:1639–1649PubMedGoogle Scholar
  45. Ihara F, Kageyama Y, Hirata M, Nishira T, Yamada Y (1991) Purification, characterization and molecular cloning of lactonising lipase from Pseudomonas species. J Biol Chem 266:18135–18140PubMedGoogle Scholar
  46. Iizumi T, Nakamura K, Fukase T (1990) Purification and characterization of a thermostable lipase from newly isolated Pseudomonas sp. KWI-56. Agric Biol Chem 545:1253–1258Google Scholar
  47. Imamura S, Kitaura S (2000) Purification and characterization of a monoacylglycerol lipase from the moderately thermophilic Bacillus sp. H-257. J Biochem 127:419–425PubMedGoogle Scholar
  48. Jaeger K-E, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397CrossRefPubMedGoogle Scholar
  49. Jaeger K-E, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403PubMedGoogle Scholar
  50. Jaeger K-E, Reetz MT (2000) Directed evolution of enantioselective enzymes for organic chemistry. Curr Opin Chem Biol 4:68–73Google Scholar
  51. Jaeger K-E, Ransac S, Dijkstra BW, Colson C, Heuvel M van, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15:29–63PubMedGoogle Scholar
  52. Jaeger K-E, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351PubMedGoogle Scholar
  53. Jaeger K-E, Eggert T, Eipper A, Reetz MT (2001) Directed evolution and the creation of enantioselective biocatalysts. Appl Microbiol Biotechnol 55:519–530PubMedGoogle Scholar
  54. Jose J, Kurup GM (1999) Purification and characterization of an extracellular lipase from a newly isolated thermophilic Bacillus pumilus. Ind J Exp Biol 37:1213–1217Google Scholar
  55. Kalil SJ, Maugeri F, Rodrigues MI (2000) Response surface analysis and simulation as a tool for bioprocess design and optimization. Process Biochem 35:539–550Google Scholar
  56. Kanwar L, Goswami P (2002) Isolation of a Pseudomonas lipase produced in pure hydrocarbon substrate and its applications in the synthesis of isoamyl acetate using membrane-immobilized lipase. Enzyme Microb Technol 31:727–735CrossRefGoogle Scholar
  57. Kanwar L, Gogoi BK, Goswami P (2002) Production of a Pseudomonas lipase in n-alkane substrate and its isolation using an improved ammonium sulfate precipitation technique. Bioresour Technol 84:207–211CrossRefPubMedGoogle Scholar
  58. Kar M, Ray L, Chattopadhyay P (1996) Isolation and identification of alkaline thermostable lipase producing microorganism and some properties of crude enzyme. Ind J Exp Biol 34:535–538Google Scholar
  59. Kazlauskas RJ, Bornscheuer U (1998) Biotransformations with lipases. In: Rehm HJ, Reeds G (eds) Biotechnology, vol 8a. Wiley–VCH, New York, pp 37–192Google Scholar
  60. Kennedy M, Krouse D (1999) Strategies for improving fermentation medium performance: a review. J Ind Microbiol Biotechnol 23:456–475Google Scholar
  61. Khyami-Horani H (1996) Thermotolerant strain of Bacillus licheniformis producing lipase. World J Microbiol Biotechnol 12:399–401Google Scholar
  62. Kim E-K, Sung M-H, Kim H-M, Oh T-K (1994) Occurrence of thermostable lipase in thermophilic Bacillus sp. strain 398. Biosci Biotechnol Biochem 58:961–962Google Scholar
  63. Kim HK, Choi HJ, Kim MH, Sohn CB, Oh TK (2002) Expression and characterization of Ca(2+)-independent lipase from Bacillus pumilus B26. Biochim Biophys Acta 1583:205–212CrossRefPubMedGoogle Scholar
  64. Kim KK, Song HK, Shin DH, Hwang KY, Suh DW (1997) The crystal structure of a triglycerol lipase from Pseudomonas cepacia reveals a highly open confirmation in the absence of bound inhibitor. Structure 5:173–185PubMedGoogle Scholar
  65. Kim M-H, Kim H-K, Lee J-K, Park S-Y, Oh TK (2000) Thermostable lipase of Bacillus stearothermophilus: high-level production, purification, and calcium-dependent thermostability. Biosci Biotechnol Biochem 64:280–286PubMedGoogle Scholar
  66. Kim SS, Kim EK, Rhee JS (1996) Effects of growth rate on the production of Pseudomonas fluorescens lipase during the fed-batch cultivation of Escherichia coli. Biotechnol Prog 12:718–722CrossRefPubMedGoogle Scholar
  67. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351CrossRefPubMedGoogle Scholar
  68. Kojima Y, Yokoe M, Mase T (1994) Purification and characterization of an alkaline lipase from Pseudomonas fluorescens AK 102. Biosci Biotechnol Biochem 58:1564–1568PubMedGoogle Scholar
  69. Kordel M, Hofmann B, Schaumburg D, Schmid RD (1991) Extracellular lipase of Pseudomonas sp. strain ATCC 21808: purification, characterization, crystallization and preliminary X-ray diffraction data. J Bacteriol 173:4836–4841PubMedGoogle Scholar
  70. Koritala S, Hesseltine CW, Pryde EH, Mounts TL (1987) Biochemical modification of fats by microorganisms: a preliminary study. J Am Oil Chem Soc 64:509–513Google Scholar
  71. Kulkarni N, Gadre RV (1999) A novel alkaline, thermostable, protease-free lipase from Pseudomonas sp. Biotechnol Lett 21:897–899CrossRefGoogle Scholar
  72. Kulkarni N, Gadre RV (2002) Production and properties of an alkaline, thermophilic lipase from Pseudomonas fluorescens NS2W. J Ind Food Microbiol 28:344–348Google Scholar
  73. Lanser AC, Manthey LK, Hou CT (2002) Regioselectivity of new bacterial lipases determined by hydrolysis of triolein. Curr Microbiol 44:336–340CrossRefPubMedGoogle Scholar
  74. Lavayre J, Verrier J, Baratti J (1982) Stereospecific hydrolysis by soluble and immobilized lipases. Biotechnol Bioeng 24:2175–2188Google Scholar
  75. Lee O-W, Koh Y-S, Kim K-J, Kim B-C, Choi H-J, Kim D-S, Suhartono MT, Pyun Y-R (1999) Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol Lett 179:393–400Google Scholar
  76. Lee SY, Rhee JS (1993) Production and partial purification of a lipase from Pseudomonas putida 3SK. Enzyme Microb Technol 15:617–623CrossRefGoogle Scholar
  77. Lee SY, Rhee JS (1994) Hydrolysis of triglyceride by the whole cell of Pseudomonas putida 3SK in two-phase batch and continuous reactor systems. Biocatal Bioeng 44:437–443Google Scholar
  78. Lengsfeld DH, Wolfer H (1988) Inhibition of pancreatic lipase in vitro by the covalent inhibitor tetrahydrolipstatin. Biochem J 256:357–361PubMedGoogle Scholar
  79. Lesuisse E, Schanck K, Colson C (1993) Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pH-tolerant enzyme. Eur J Biochem 216:155–160PubMedGoogle Scholar
  80. Liese A, Seelbach K, Wandrey C (2001) Industrial biotransformations. Wiley–VCH, WeinheimGoogle Scholar
  81. Lin SF, Chiou CM, Yeh CM, Tsai YC (1996) Purification and partial characterization of an alkaline lipase from Pseudomonas pseudoalcaligenes F-111. Appl Environ Microbiol 62:1093–1095PubMedGoogle Scholar
  82. Litthauer D, Ginster A, Skein EVE (2002) Pseudomonas luteola lipase: a new member of the 320-residue Pseudomonas lipase family. Enzyme Microb Technol 30:209–215CrossRefGoogle Scholar
  83. Liu IL, Tsai SW (2003) Improvements in lipase production and recovery form Acinetobacter radioresistens in presence of polypropylene powders filled with carbon sources. Appl Biochem Biotechnol 104:129–140CrossRefPubMedGoogle Scholar
  84. Lolis E, Petsko G (1990) Transition state analogues in protein crystallography probes of the structural source of enzyme catalysis. Annu Rev Biochem 59:597–630CrossRefPubMedGoogle Scholar
  85. Lopes Mde F, Leitao AL, Regalla M, Marques JJ, Carrondo MJ, Crespo MT (2002) Characterization of a highly thermostable extracellular lipase from Lactobacillus plantarum. Int J Food Microbiol 76:107–115CrossRefPubMedGoogle Scholar
  86. Lorenz P, Liebeton K, Niehaus F, Eck J (2002) Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr Opin Biotechnol 13:572–577CrossRefPubMedGoogle Scholar
  87. Lotrakul P, Dharmsthiti S (1997) Lipase production by Aeromonas sobria LP004 in a medium containing whey and soyabean meal. World J Microbiol Biotechnol 13:163–166CrossRefGoogle Scholar
  88. Lotti M, Monticelli S, Montesinos JL, Brocca S, Valero F, Lafuente J (1998) Physiological control on the expression and secretion of Candida rugosa lipase. Chem Phys Lipids 93:143–148CrossRefPubMedGoogle Scholar
  89. Macrae AR, Hammond RC (1985) Present and future applications of lipases. Biotech Genet Eng Rev 3:193–217Google Scholar
  90. Mahler GF, Kok RG, Cordenons A, Hellingwerf KJ, Nudel BC (2000) Effects of carbon sources on extracellular lipase production and lipA transcription in Acinetobacter calcoaceticus. J Ind Microbiol Biotechnol 24:25–30Google Scholar
  91. Matsumae H, Furui M, Shibatani T (1993) Lipase-catalyzed asymmetric hydrolysis of 3-phenylglycidic acid ester, the key intermediate in the synthesis of diltiazem hydrochloride. J Ferment Bioeng 75:93–98Google Scholar
  92. Matsumae H, Furul M, Shibatani T, Tosa T (1994) Production of optically active 3-phenylglycidic acid ester by the lipase from Serratia marcescens on a hollow-fiber membrane reactor. J Ferment Bioeng 78:59–63Google Scholar
  93. Misset O, Gerritse G, Jaeger K-E, Winkler U, Colson C, Schanchk K, Lesuisse E, Dartois Y, Blaawoo M, Ransac S, Dijkstra BW (1994) The structure function relationship of the lipases from Pseudomonas aeruginosa and Bacillus subtilis. Protein Eng 7:523–529PubMedGoogle Scholar
  94. Mitsuda S, Umemura T, Hirihara H (1988) Preparation of an optically pure secondary alcohols of synthetic pyrethroids using microbial lipases. Appl Microbiol Biotechnol 29:310–315Google Scholar
  95. Muralidhar RV, Chirumamilla RR, Marchant R, Ramachandran VN, Ward OP, Nigam P (2002) Understanding lipase stereoselectivity. World J Microbiol Biotechnol 18:81–97CrossRefGoogle Scholar
  96. Muraoka T, Ando T, Okuda H (1982). Purification and properties of a novel lipase from Staphylococcus aureus 226. J Biochem 92:1933–1939PubMedGoogle Scholar
  97. Nardini M, Dijkstra BW (1999) α/β Hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9:732–737Google Scholar
  98. Nashif SA, Nelson FE (1953) The lipase of Pseudomonas fragi II: factors affecting lipase production. J Dairy Sci 36:471–480Google Scholar
  99. Nawani N, Kaur J (2000) Purification, characterization and thermostability of a lipase from a thermophilic Bacillus sp. J33. Mol Cell Biochem 206:91–96CrossRefPubMedGoogle Scholar
  100. Odera M, Takeeuchi K, Tohe A (1986) Molecular cloning of lipase genes from Alcaligenes denitrificans and their expression in Escherichia coli. J Ferment Technol 64:363–371CrossRefGoogle Scholar
  101. Oh B-C, Kim H-K, Lee J-K, Kang S-C, Oh T-K (1999) Staphylococcus haemolyticus lipase: biochemical properties, substrate specificity and gene cloning. FEMS Microbiol Lett 179:385–392CrossRefPubMedGoogle Scholar
  102. Pabai F, Kermasha S, Morin A (1995) Interesterification of butter fat by partially purified extracellular lipases from Pseudomonas putida, Aspergillus niger and Rhizopus oryzae. World J Microbiol Biotechnol 11:669–677Google Scholar
  103. Pabai F, Kermasha S, Morin A (1996) Use of continuous culture to screen for lipase-producing microorganisms and interesterification of butterfat by lipase isolates. Can J Microbiol 42:446–452PubMedGoogle Scholar
  104. Paiva AL, Balcão VM, Malacta FX (2000) Review: kinetics and mechanisms of reactions catalyzed by immobilized lipases. Enzyme Microbiol Technol 27:187–204CrossRefGoogle Scholar
  105. Palekar AA, Vasudevan PT, Yan S (2000) Purification of lipase: a review. Biocatal Biotransform 18:177–200Google Scholar
  106. Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol UT (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131PubMedGoogle Scholar
  107. Patkar SA, Bjorkling F (1994) Lipase inhibitors. In: Woolley P, Petersen SB (eds) Lipases—their structure, biochemistry and application. Cambridge University Press, Cambridge, pp 207–224Google Scholar
  108. Petrounia LP, Arnold FH (2000) Designed evolution of enzymatic properties. Curr Opin Biotechnol 11:325–330PubMedGoogle Scholar
  109. Petschen I, Malo EA, Bosch MP, Guerrero A (1996) Highly enantioselective synthesis of long chain alkyl trifluoromethyl carbinols and β-thiotrio-fluoromethyl carbinols through lipases. Tetrahedron Asymmetry 7:2135–2143CrossRefGoogle Scholar
  110. Pratt J, Cooley JD, Purdy CW, Straus DC (2000) Lipase activity from strains of Pasteurella multocida. Curr Microbiol 40:306–309CrossRefPubMedGoogle Scholar
  111. Pratuamgdejkul J, Dharmsthiti S (2000) Purification and characterization of lipase form psychrophilic Acinetobacter calcoaceticus LP009. Microbiol Res 155:95–100PubMedGoogle Scholar
  112. Queiroz JA, Garcia FAP, Cabral JMS (1995) Hydrophobic interaction chromatography of Chromobacterium viscosum lipase. J Chromatogr A 707:137–142CrossRefGoogle Scholar
  113. Queiroz JA, Tomaz CT, Cabral JMS (2001) Hydrophobic interaction chromatography of proteins. J Biotechnol 87:143–159CrossRefPubMedGoogle Scholar
  114. Rashid N, Shimada Y, Ezaki S, Atomi H, Imanaka T (2001) Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Appl Environ Microbiol 67:4064–4069CrossRefPubMedGoogle Scholar
  115. Rathi P, Bradoo S, Saxena RK, Gupta R (2000) A hyper-thermostable, alkaline lipase from Pseudomonas sp. with the property of thermal activation. Biotechnol Lett 22:495–498CrossRefGoogle Scholar
  116. Rathi P, Saxena RK, Gupta R (2001) A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochem 37:187–192CrossRefGoogle Scholar
  117. Rathi P, Goswami VK, Sahai V, Gupta R (2002) Response surface methodology for improving production of hyperthermostable lipase from Burkholderia cepacia. J Appl Microbiol 93:930–936CrossRefPubMedGoogle Scholar
  118. Reetz MT (2001) Combinatorial and evolution-based methods in the creation of enantioselective catalysts. Angew Chem Int Ed 40:284–310Google Scholar
  119. Reetz MT, Jaeger K-E (1998) Overexpression, immobilization and biotechnological application of Pseudomonas lipases. Chem Phys Lipids 93:3–14CrossRefPubMedGoogle Scholar
  120. Reetz MT, Jaeger K-E (1999) Superior biocatalysts by directed evolution. Topics Curr Chem 200:31–57Google Scholar
  121. Saxena RK, Sheoran A, Giri B, Davidson S (2003) Purification strategies for microbial lipases. J Microbiol Methods 52:1–18CrossRefPubMedGoogle Scholar
  122. Schmidt-Dannert C, Sztajer H, Stocklein W, Menge U, Schmid RD (1994) Screening purification and properties of a thermophilic lipase from Bacillus thermocatenulatus. Biochim Biophys Acta 1214:43–53PubMedGoogle Scholar
  123. Schmidt-Dannert C, Rúa ML, Atomi H, Schmid RD (1996) Thermoalkalophilic lipase of Bacillus thermocatenulatus. I. Molecular cloning, nucleotide sequence, purification and some properties. Biochim Biophys Acta 1301:105–114CrossRefPubMedGoogle Scholar
  124. Schmidt-Dannert C, Luisa Rua M, Schmid RD (1997) Two novel lipases from the thermophile Bacillus thermocatenulatus: Screening, purification, cloning, overexpression and properties. Methods Enzymol 284:194–219PubMedGoogle Scholar
  125. Schuepp C, Kermasha S, Michalski M-C, Morin A (1997) Production, partial purification and characterization of lipases from Pseudomonas fragi CRDA 037. Process Biochem 32:225–232CrossRefGoogle Scholar
  126. Schulz T, Plesis J, Schmid RD (2000) Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model. Protein Sci 9:1053–1062PubMedGoogle Scholar
  127. Sharma S, Gupta MN (2001) Alginate as a macroaffinity ligand and an additive for enhanced activity and thermostability of lipases. Biotechnol Appl Biochem 33:161–165CrossRefPubMedGoogle Scholar
  128. Sharma R, Soni SK, Vohra RM, Gupta LK, Gupta JK (2002a) Purification and characterization of a thermostable alkaline lipase from a new thermophilic Bacillus sp. RSJ-1. Process Biochem 37:1075–1084CrossRefGoogle Scholar
  129. Sharma R, Soni SK, Vohra RM, Jolly RS, Gupta LK, Gupta JK (2002b) Production of extracellular alkaline lipase from a Bacillus sp. RSJ1 and its application in ester hydrolysis. Ind J Microbiol 42:49–54Google Scholar
  130. Sharon C, Furugoh S, Yamakido T, Ogawa HI, Kato Y (1998) Purification and characterization of a lipase from Pseudomonas aeruginosa KKA-5 and its role in castor oil hydrolysis. J Ind Microbiol Biotechnol 20:304–307Google Scholar
  131. Shinkai A, Hirano A, Aisaka K (1996) Substitutions of Ser for Asn-163 and Pro for Leu-264 are important for stabilization of lipase from Pseudomonas aeruginosa. J Biochem 120:915–921PubMedGoogle Scholar
  132. Shirazi SH, Rehman SR, Rehman MM (1998) Short communication: production of extracellular lipases by Saccharomyces cerevisiae. World J Microbiol Biotechnol 14:595–597CrossRefGoogle Scholar
  133. Sidhu P, Sharma R, Soni SK, Gupta JK (1998a) Effect of cultural conditions on extracellular alkaline lipase production from Bacillus sp. RS-12 and its characterization. Ind J Microbiol 38:9–14Google Scholar
  134. Sidhu P, Sharma R, Soni SK, Gupta JK (1998b) Production of extracellular alkaline lipase by a new thermophilic Bacillus sp. Folia Microbiol 43:51–54Google Scholar
  135. Simons JWFA, Adams H, Cox RC, Dekker N, Gotz F, Slotboom AJ, Verheij HM (1996) The lipase from Staphylococcus aureus: expression in Escherichia coli, large-scale purification and comparison of substrate specificity to Staphylococcus hyicus lipase. Eur J Biochem 242:760–769PubMedGoogle Scholar
  136. Skagerlind P, Jansson M, Hult K (1992) Surfactant interference on lipase catalyzed reactions in microemulsions. J Chem Tech Biotechnol 54:277–282Google Scholar
  137. Snellman EA, Sullivan ER, Colwell RR (2002) Purification and properties of the extracellular lipase, Lip A, of Acinetobacter sp. RAG-1. Eur J Biochem 269:5771–5779CrossRefPubMedGoogle Scholar
  138. Sugihara A, Tani T, Tominaga Y (1991) Purification and characterization of a novel thermostable lipase from Bacillus sp. J Biochem 109:211–216PubMedGoogle Scholar
  139. Sugiura M, Isobe M, Muroya N, Yamaguchi T (1974) Purification and properties of a Chromobacterium lipase with a high molecular weight. Agric Biol Chem 38:947–952Google Scholar
  140. Sugiura M, Oikawa T, Hirano K, Inukai T (1977) Purification, crystallization and properties of triacylglycerol lipase from Pseudomonas fluorescens. Biochim Biophys Acta 488:353–358CrossRefPubMedGoogle Scholar
  141. Sunna A, Hunter L, Hutton CA, Bergquist PL (2002) Biochemical characterization of a recombinant thermoalkalophilic lipase and assessment of its substrate enantioselectivity. Enzyme Microb Technol 31:472–476CrossRefGoogle Scholar
  142. Surinenaite B, Bendikiene V, Juodka B, Bachmatova I, Marcinkevichiene L (2002) Characterization and physicochemical properties of a lipase from Pseudomonas mendocina 3121-1. Biotechnol Appl Biochem 36:47–55CrossRefPubMedGoogle Scholar
  143. Swaisgood HE, Bozoglu F (1984) Heat inactivation of the extracellular lipase from Pseudomonas fluorescens MC50. J Agric Food Chem 32:7–10Google Scholar
  144. Taipa MA, Aires-Barros MR, Cabral JMS (1992) Purification of lipases. J Biotechnol 26:111–142CrossRefPubMedGoogle Scholar
  145. Takagi Y, Teramoto J, Kihara H, Itoh T, Tsukube H (1996) Thiacrown ether as regulator of lipase-catalyzed trans-esterification in organic media—practical optical resolution of allyl alcohols. Tetrahedron Lett 37:4991–4992CrossRefGoogle Scholar
  146. Terstappen GC, Geerts AJ, Kula MR (1992) The use of detergent-based aqueous two-phase systems for the isolation of extracellular proteins: purification of a lipase from Pseudomonas cepacia. Biotechnol Appl Biochem 16:228–235PubMedGoogle Scholar
  147. Tobin MB, Gustafsson C, Huisman GW (2000) Directed evolution: the ‘rational’ basis for ‘irrational’ design. Curr Opin Struc Biol 10:421–427CrossRefGoogle Scholar
  148. Toyo-Jozo (1988) Production of optically active β-monoalkyl malate and optically active isoserine. Japanese patent JP-J63137687Google Scholar
  149. Van Kampen MD, Rosenstein R, Götz F, Egmond MR (2001) Cloning, purification and characterization of Staphylococcus warneri lipase 2. Biochim Biophys Acta 1544:229–241PubMedGoogle Scholar
  150. Van Oort MG, Deever AMTJ, Dijkman R, Tjeenk ML, Verheij HM, Haas GH de, Wenzig E, Gotz F (1989) Purification and substrate specificity of Staphylococcus hyicus lipase. Biochemistry 28:9278–9285PubMedGoogle Scholar
  151. Vicente MLC, Aires–Barres MR, Cabral JMS (1990) Purification of Chromobacterium viscosum lipases using reverse micelles. Biotechnol Techn 4:137–142Google Scholar
  152. Wakelin NG, Forster CF (1997) An investigation into microbial removal of fats, oils and greases. Bioresour Technol 59:37–43CrossRefGoogle Scholar
  153. Wang C-S, Dashti A, Downs D (1999) Bile salt-activated lipase. In: Doolittle MH, Reue K (eds) Lipase and phospholipase protocols. (Methods in molecular biology, vol 109) Humana Press, Totowa, N.J., pp 71–79Google Scholar
  154. Wang Y, Srivastava KC, Shen G-J, Wang HY (1995) Thermostable alkaline lipase from a newly isolated thermophilic Bacillus, strain A30-1 (ATCC 53841). J Ferment Bioeng 79:433–438CrossRefGoogle Scholar
  155. Yamada Y, Kuboi R, Komasawa I (1993) Increased activity of Chromobacterium viscosum lipase in aerosol OT reverse micelles in the presence of nonionic surfactants. Biotechnol Prog 9:468–472PubMedGoogle Scholar
  156. Yamamoto K, Fujiwara N (1988) Purification and some properties of a castor-oil-hydrolysing lipase from Pseudomonas sp. Agric Biol Chem 52:3015–3021Google Scholar
  157. Yamamoto K, Fujiwara N (1995) The hydrolysis of castor oil using a lipase from Pseudomonas sp. FB-24: positional and substrate specificity of the enzyme and optimum reaction conditions. Biosci Biotechnol Biochem 59:1262–1266Google Scholar
  158. Yeo SH, Nihira T, Yamada Y (1998) Screening and identification of a novel lipase form Burkholderia sp. YY62 which hydrolyzes t-butyl esters effectively. J Gen Appl Microbiol 44:147–152PubMedGoogle Scholar
  159. Zhao H, Chockalingam K, Chen Z (2002) Directed evolution of enzymes and pathways for industrial biocatalysis. Curr Opin Biotechnol 13:104–110CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations