Applied Microbiology and Biotechnology

, Volume 65, Issue 2, pp 211–218 | Cite as

Degradation of polycyclic aromatic hydrocarbons by a newly isolated dibenzofuran-utilizing Janibacter sp. strain YY-1

  • A. YamazoeEmail author
  • O. Yagi
  • H. Oyaizu
Original Paper


The dibenzofuran (DF)-utilizing bacterium strain YY-1 was newly isolated from soil. The isolate was identified as Janibacter sp. with respect to its 16S rDNA sequence and fatty acid profiles, as well as various physiological characteristics. In addition to DF, strain YY-1 could grow on fluorene and dibenzothiophene as sole sources of carbon and energy. It was also able to cometabolize a variety of polycyclic aromatic hydrocarbons including dibenzo-p-dioxin, phenanthrene, and anthracene. The major metabolites formed from DF, biphenyl, dibenzothiophene, and naphthalene were identified by using gas chromatography-mass spectrometry as 2,3,2′-trihydroxybiphenyl, biphenyl-dihydrodiol, dibenzothiophene 5-oxide, and coumarin, respectively. These results indicate that strain YY-1 can catalyze angular dioxygenation, lateral dioxygenation, and sulfoxidation.


PAHs Cometabolic Degradation Washed Cell Suspension Janibacter Angular Dioxygenation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Akira Yokota (Institute of Molecular and Cellular Biosciences, University of Tokyo) for valuable advice and for providing us with the MIDI system used in the identification of strain YY-1.


  1. Annweiler E, Richnow HH, Antranikian G, Hebenbrock S, Garms C, Franke S, Francke W, Michaelis W (2000) Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. Appl Environ Microbiol 66:518–523PubMedGoogle Scholar
  2. Anzai Y, Kudo Y, Oyaizu H (1997) The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 47:249–251Google Scholar
  3. Bastiaens L, Springael D, Wattiau P, Harms H, deWachter R, Verachtert H, Diels L (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl Environ Microbiol 66:1834–1843PubMedGoogle Scholar
  4. Becher D, Specht M, Hammer E, Francke W, Schauer F (2000) Cometabolic degradation of dibenzofuran by biphenyl-cultivated Ralstonia sp. strain SBUG 290. Appl Environ Microbiol 66:4528–4531PubMedGoogle Scholar
  5. Bouchez M, Blanchet D, Vandecasteele JP (1995) Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism. Appl Microbiol Biotechnol 43:156–164PubMedGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  7. Bressler DC, Fedorak PM (2000) Bacterial metabolism of fluorene, dibenzofuran, dibenzothiophene, and carbazole. Can J Microbiol 46:397–409CrossRefPubMedGoogle Scholar
  8. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368Google Scholar
  9. Cerniglia CE, Morgan JC, Gibson DT (1979) Bacterial and fungal oxidation of dibenzofuran. Biochem J 180:175–185PubMedGoogle Scholar
  10. Churchill SA, Harper JP, Churchill PF (1999) Isolation and characterization of a Mycobacterium species capable of degrading three- and four-ring aromatic and aliphatic hydrocarbons. Appl Environ Microbiol 65:549–552PubMedGoogle Scholar
  11. Dean-Ross D, Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol Lett 204:205–211CrossRefPubMedGoogle Scholar
  12. Engesser KH, Strubel V, Christoglou K, Fischer P, Rast HG (1989) Dioxygenolytic cleavage of aryl ether bonds: 1,10-dihydro-1,10-dihydroxyfluoren-9-one, a novel arene dihydrodiol as evidence for angular dioxygenation of dibenzofuran. FEMS Microbiol Lett 53:205–209CrossRefPubMedGoogle Scholar
  13. Fortnagel P, Harms H, Wittich RM, Krohn S, Meyer H, Sinnwell V, Wilkes H, Fancke W (1990) Metabolism of dibenzofuran by Pseudomonas sp. strain HH69 and the mixed culture HH27. Appl Environ Microbiol 56:1148–1156Google Scholar
  14. Fukuda K, Nagata S, Taniguchi H (2002) Isolation and characterization of dibenzofuran-degrading bacteria. FEMS Microbiol Lett 208:179–185CrossRefPubMedGoogle Scholar
  15. Fuse H, Takimura O, Murakami K, Inoue H, Yamaoka Y (2003) Degradation of chlorinated biphenyl, dibenzofuran, and dibenzo-p-dioxin by marine bacteria that degrade biphenyl, carbazole, or dibenzofuran. Biosci Biotechnol Biochem 67:1121–1125CrossRefPubMedGoogle Scholar
  16. Grifoll M, Selifonov SA, Gatlin CV, Chapman PJ (1995) Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds. Appl Environ Microbiol 61:3711–3723PubMedGoogle Scholar
  17. Habe H, Chung JS, Lee JH, Kasuga K, Yoshida T, Nojiri H, Omori T (2001) Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by two types of bacteria having angular dioxygenases with different features. Appl Environ Microbiol 67:3610–3617CrossRefPubMedGoogle Scholar
  18. Hong HB, Chang YS, Nam IH, Fortnagel P, Schmidt S (2002) Biotransformation of 2,7-dichloro- and 1,2,3,4-tetrachlorodibenzo-p-dioxin by Sphingomonas wittichii RW1. Appl Environ Microbiol 68:2584–2588Google Scholar
  19. Iida T, Mukouzaka Y, Nakamura K, Yamaguchi I, Kudo T (2002) Isolation and characterization of dibenzofuran-degrading actiomycetes: analysis of multiple extradiol dioxygenase genes in dibenzofuran-degrading Rhodococcus species. Biosci Biotechnol Biochem 66:1462–1472CrossRefPubMedGoogle Scholar
  20. Imamura Y, Ikeda M, Yoshida S, Kuraishi H (2000) Janibacter brevis sp. nov., a new trichloroethylene-degrading bacterium isolated from polluted environments. Int J Syst Evol Microbiol 50:1899–1903PubMedGoogle Scholar
  21. Izumi Y, Ohshiro T, Ogino H, Hine Y, Shimao M (1994) Selective desulfurization of dibenzothiophene by Rhodococcus erythropolis D-1. Appl Environ Microbiol 60:223–226Google Scholar
  22. Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067PubMedGoogle Scholar
  23. Keim T, Francke W, Schmidt S, Fortnagel P (1999) Catabolism of 2,7-dichloro- and 2,4,8-trichlorodibenzofuran by Sphingomonas sp strain RW1. J Ind Microbiol Biotechnol 23:359–363Google Scholar
  24. Kimura N, Urushigawa Y (2001) Metabolism of dibenzo-p-dioxin and chlorinated dibenzo-p-dioxin by a Gram-positive bacterium, Rhodococcus opacus SAO 101. J Biosci Bioeng 92:138–143CrossRefGoogle Scholar
  25. Kohler HP, Schmid A, van der Maarel M (1993) Metabolism of 2,2′-dihydroxybiphenyl by Pseudomonas sp. strain HBP1: production and consumption of 2,2′,3-trihydroxybiphenyl. J Bacteriol 175:1621–1628PubMedGoogle Scholar
  26. Martin K, Schumann P, Rainey FA, Schuetze B, Groth I (1997) Janibacter limosus gen. nov., sp. nov., a new actinomycete with meso-diaminopimelic acid in the cell wall. Int J Syst Bacteriol 47:529–534PubMedGoogle Scholar
  27. Monna L, Omori T, Kodama T (1993) Microbial degradation of dibenzofuran, fluorene, and dibenzo-p-dioxin by Staphylococcus auriculans DBF63. Appl Environ Microbiol 59:285–289PubMedGoogle Scholar
  28. Nojiri H, Nam JW, Kosaka M, Morii KI, Takemura T, Furihata K, Yamane H, Omori T (1999) Diverse oxygenations catalyzed by carbazole 1,9a-dioxygenase from Pseudomonas sp. Strain CA10. J Bacteriol 181:3105–3113PubMedGoogle Scholar
  29. Nojiri H, Habe H, Omori T (2001) Bacterial degradation of aromatic compounds via angular dioxygenation. J Gen Appl Microbiol 47:279–305PubMedGoogle Scholar
  30. Oldfield C, Pogrebinsky O, Simmonds J, Olson ES, Kulpa CF (1997) Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. strain IGTS8 (ATCC 53968). Microbiology 143:2961–2973PubMedGoogle Scholar
  31. Resnick SM, Gibson DT (1996) Regio- and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiophene by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl Environ Microbiol 62:4073–4080PubMedGoogle Scholar
  32. Schmid A, Rothe B, Altenbuchner J, Ludwig W, Engesser KH (1997) Characterization of three distinct extradiol dioxygenases involved in mineralization of dibenzofuran by Terrabacter sp. strain DPO360. J Bacteriol 179:53–62PubMedGoogle Scholar
  33. Seeger M, Camara B, Hofer B (2001) Dehalogenation, denitration, dehydroxylation, and angular attack on substituted biphenyls and related compounds by a biphenyl dioxygenase. J Bacteriol 183:3548–3555CrossRefPubMedGoogle Scholar
  34. Selifonov SA, Slepenkin AV, Adanin VM, Nefedova MY, Starovoitov II (1991) Oxidation of dibenzofuran by Pseudomonas strains harboring plasmids of naphthalene degradation. Mikrobiologiia 60:67–71PubMedGoogle Scholar
  35. Shuttleworth KL, Cerniglia CE (1995) Environmental aspects of PAH biodegradation. Appl Biochem Biotechnol 54:291–302PubMedGoogle Scholar
  36. Stope MB, Becher D, Hammer E, Schauer F (2002) Cometabolic ring fission of dibenzofuran by Gram-negative and Gram-positive biphenyl-utilizing bacteria. Appl Microbiol Biotechnol 59:62–67CrossRefPubMedGoogle Scholar
  37. Stringfellow WT, Aitken MD (1995) Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads. Appl Environ Microbiol 61:357–362PubMedGoogle Scholar
  38. Strubel V, Engesser KH, Fischer P, Knackmuss HJ (1991) 3-(2-Hydroxyphenyl)catechol as substrate for proximal meta ring cleavage in dibenzofuran degradation by Brevibacterium sp. strain DPO 1361. J Bacteriol 173:1932–1937PubMedGoogle Scholar
  39. Takagi T, Nojiri H, Yoshida T, Habe H, Omori T (2002) Detailed comparison between the substrate specificities of two angular dioxygenases, dibenzofuran 4,4a-dioxygenase from Terrabacter sp and carbazole 1,9a-dioxygenase from Pseudomonas resinovorans. Biotechnol Lett 24:2099–2106CrossRefGoogle Scholar
  40. Wilkes H, Wittich R, Timmis KN, Fortnagel P, Francke W (1996) Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by Sphingomonas sp. strain RW1. Appl Environ Microbiol 62:367–371Google Scholar
  41. Wittich RM (1998) Degradation of dioxin-like compounds by microorganisms. Appl Microbiol Biotechnol 49:489–499PubMedGoogle Scholar
  42. Wittich RM, Wilkes H, Sinnwell V, Francke W, Fortnagel P (1992) Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1. Appl Environ Microbiol 58:1005–1010PubMedGoogle Scholar
  43. Yoon JH, Lee KC, Kang SS, Kho YH, Kang KH, Park YH (2000) Janibacter terrae sp. nov., a bacterium isolated from soil around a wastewater treatment plant. Int J Syst Evol Microbiol 50:1821–1827PubMedGoogle Scholar
  44. Zhu H, Qu F, Zhu LH (1993) Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res 21:5279–5280PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Graduate School of Agricultural and Life SciencesThe University of TokyoTokyo Japan
  2. 2.Biotechnology Research CenterThe University of TokyoTokyo Japan
  3. 3.Research Center for Water Environment TechnologyThe University of TokyoTokyo Japan

Personalised recommendations