Advertisement

Applied Microbiology and Biotechnology

, Volume 64, Issue 2, pp 137–145 | Cite as

Principles of biorefineries

  • B. Kamm
  • M. Kamm
Mini-Review

Abstract

Sustainable economic growth requires safe, sustainable resources for industrial production. For the future re-arrangement of a substantial economy to biological raw materials, completely new approaches in research and development, production and economy are necessary. Biorefineries combine the necessary technologies between biological raw materials and industrial intermediates and final products. The principal goal in the development of biorefineries is defined by the following: (biomass) feedstock-mix + process-mix → product-mix. Here, particularly the combination between biotechnological and chemical conversion of substances will play an important role. Currently the “whole-crop biorefinery”, “green biorefinery” and “lignocellulose-feedstock biorefinery” systems are favored in research and development.

Keywords

Lignin European Union Furfural Syngas Corn Stover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Biomass R&D Technical Advisory Committee (Oct. 2002a) Vision for bioenergy and biobased products in the United States. http://www.bioproducts-bioenergy.gov/pdfs/BioVision_03_Web.pdf
  2. Biomass R&D Technical Advisory Committee (Dec. 2002b) Roadmap for biomass technologies in the United States. http://www.bioproducts-bioenergy.gov/pdfs/FinalBiomassRoadmap.pdf
  3. Cargill Dow LLC (2001) Cargill-Dow to up PLA capacity to 450,000 t/yr in 10 yrs. Jpn Chem Week: 11 OctoberGoogle Scholar
  4. Clark JH (1999) Green chemistry: challenges and opportunities. Green Chem 1:1–8CrossRefGoogle Scholar
  5. Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326CrossRefPubMedGoogle Scholar
  6. Dale B (2002) Encyclopedia of physical science and technology, vol 2, 3rd edn. McGraw-Hill, New York, pp 141–157Google Scholar
  7. European Parliament and Council (2002) Towards a European strategy for the security of energy supply. (Green Paper KOM2002/321) European Parliament, StrasbourgGoogle Scholar
  8. European Parliament and Council (2003) The promotion of the use of biofuels or other renewable fuels for transport. (Directive 2003/30/EC) Off J Eur Union 2003:L123/42Google Scholar
  9. Gesetz für den Vorrang erneuerbarer Energien (2000) Erneuerbare Energiegesetz. (EEG/EnWGuaÄndG) BGBI 2000:305Google Scholar
  10. Industrial Association of Biodegradable Polymers and Bioplastics Manufacturers and Processors (2003) Advanced bioplastics, an international symposium. Industrial Association of Biodegradable Polymers and Bioplastics Manufacturers and Processors , NürnbergGoogle Scholar
  11. Kamm B, Kamm M, Richter K (1997) Entwicklung eines Verfahrens zur Konversion von hexosenhaltigen Rohstoffen zu biogenen Wirk- und Werkstoffen—Polylactid aus fermentiertem Roggenschrot über organische Aminiumlactate als alternative Kuppler biotechnischer und chemischer Stoffwandlungen. In: Czedik-Eysenberg PB (ed) Chemie nachwachsender Rohstoffe. Österreichisches Bundesministerium für Umwelt, Wien, pp 83–87Google Scholar
  12. Kamm B, Kamm M, Soyez K (1998) The green biorefinery, concept of technology. (First international symposium on green biorefinery) Neuruppin, Society of Ecological Technology and System Analysis, BerlinGoogle Scholar
  13. Kamm B, et al (2000) Green biorefinery Brandenburg, article to development of products and of technologies and assessment. Brandenburg Umweltber 8:260–269Google Scholar
  14. Morris DJ, Ahmed I (1992) The carbohydrate economy, making chemicals and industrial materials from plant matter. Institute of Local Self Reliance, Washington, D.C.Google Scholar
  15. Narodoslawsky M (1999) Green biorefinery. (Second international symposium on green biorefinery) SUSTAIN, FeldbachGoogle Scholar
  16. National Research Council (2000) Biobased industrial products, priorities for research and commercialization. National Academic Press, Washington, D.C.Google Scholar
  17. Nonato RV, Mantellato, PE, Rossel CEV (2001) Integrated production of biodegradable plastic, sugar and ethanol. Appl Microbiol Biotechnol 57:1–5PubMedGoogle Scholar
  18. Ringpfeil M (2002) Biobased industrial products and biorefinery systems—Industrielle Zukunft des 21 Jahrhunderts? Brandenburgische Umweltberichte 10 (in press) http://www.biopract.de
  19. Röper H (2001) Perspektiven der industriellen Nutzung nachwachsender Rohstoffe, insbesondere von Stärke und Zucker. Mitt Fachgruppe Umweltchem Ökotoxikol Ges Dtsch Chem 7:6–12Google Scholar
  20. Umweltbundesamt (2000) Klimaschutz durch Nutzung erneuerbarer Energien. (Report 2) Erich Schmidt, BerlinGoogle Scholar
  21. U.S. Congress (2000) Biomass research and development act of 2000. U.S. Congress, Washington, D.C.Google Scholar
  22. U.S. Department of Energy (1997) Energy, environmental, and economics (E3) handbook—a resource tool to aid the office of industrial technologies, 1st edn. http://www.oit.doe.gov/e3handbook
  23. U.S. President (1999) Developing and promoting biobased products and bioenergy. (Executive order 13101/13134, William J. Clinton) The White House, Washington, D.C.Google Scholar
  24. Van Dyne DL, Blasé MG, Clements LD (1999) A strategy for returning agriculture and rural America to long-term full employment using biomass refineries. In: Janeck J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, Va., pp 114–123Google Scholar
  25. Vorlop KD, Willke T (2003) Industrielle Biokonversion nachwachsender Rohstoffe als Alternative zu klassischen Chemischen Verfahren. In: Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft (ed) Symposium Nachwachsende Rohstoffe für die Chemie, Schriftenreihe Nachwachsende Rohstoffe, vol 22. Landwirtschaftsverlag, Münster, pp 609–622Google Scholar
  26. Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552CrossRefGoogle Scholar
  27. Zoebelin H (2001) Dictionary of renewable resources, Wiley–VCH, WeinheimGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Research Institute of Bioactive Polymer Systems e.V.Research Center Teltow–SeehofTeltowGermany
  2. 2.Biorefinery.de GmbHPotsdamGermany

Personalised recommendations