Applied Microbiology and Biotechnology

, Volume 64, Issue 3, pp 326–332 | Cite as

Reutericyclin: biological activity, mode of action, and potential applications

  • M. G. GänzleEmail author


Reutericyclin is an inhibitory compound produced by sourdough isolates of Lactobacillus reuteri that is structurally but not functionally related to naturally occurring tetramic acids. It is bacteriostatic or bactericidal to gram-positive bacteria based on its activity as a proton-ionophore, and a broad range of food-related spoilage organisms and pathogens is inhibited by reutericyclin. Gram-negative bacteria are resistant to reutericyclin because of the barrier properties of their outer membrane, and resistance of beer-spoiling lactobacilli towards hop bitter acids provides cross-protection to reutericyclin. Remarkably, reutericyclin-producing strains were shown to persist for a period of 10 years in an industrial sourdough fermentation, and reutericyclin was shown to be produced in concentrations active against competitors during growth of L. reuteri in sourdough. Based on the known properties of reutericyclin and L. reuteri, reutericyclin-producing strains may have applications in the biopreservation of foods. Furthermore, these strains were shown to colonize reconstituted lactobacilli-free mice at high levels. Therefore, they could serve as a suitable model system to evaluate a possible impact of antimicrobial compounds on the intestinal microflora of humans and animals.


Lactobacillus Lactic Acid Bacterium Lactobacillus Reuteri Tenuazonic Acid Tetramic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Clarissa Schwab is acknowledged for her careful revision of the manuscript.


  1. Alakomi HL, Skyttä E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander K (2000) Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol 66:2001–2005CrossRefPubMedGoogle Scholar
  2. Axelsson LT, Chung TC, Dobrogosz WJ, Lindgren SE (1989) Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microbial. Ecol. Health Disease 2:131–136Google Scholar
  3. Bateup JM, McConnell MA, Jenkinson HF, Tannock GW (1995) Comparison of Lactobacillus strains with respect to bile salt hydrolase activity, colonization of the gastrointestinal tract, and growth rate of the murine host. Appl Environ Microbiol 61:1147–1149PubMedGoogle Scholar
  4. Bennik MHJ, Verheul A, Abee T, Naaktgeboren-Stoffels G, Gorris LGM, Smid EJ (1997) Interactions of nisin and pediocin PA-1 with closely related lactic acid bacteria that manifest over 100-fold differences in bacteriocin sensitivity. Appl Environ Microbiol 63:3628–3639PubMedGoogle Scholar
  5. De Vuyst L, Vandamme EJ (1994) Antimicrobial potential of lactic acid bacteria. In: de Vuyst L, Vandamme EJ (eds) Bacteriocins of lactic acid bacteria. Chapman and Hall, London, pp 91–142Google Scholar
  6. Eijsink VGH, Axelsson L, Diep DB, Havarstein LS, Holo H, Nes IF (2002) Production of class II bacteriocins by lactic acid bacteria: an example of biological warfare and communication. Antonie van Leeuwenhoek 81:639–654CrossRefPubMedGoogle Scholar
  7. Gänzle MG, Vogel RF (2002) Contribution of reutericyclin production to the stable persistence of Lactobacillus reuteri in an industrial sourdough fermentation. Int J Food Microbiol 80:31–45Google Scholar
  8. Gänzle MG, Vogel RF (2003) Studies on the mode of action of reutericyclin. Appl Environ Microbiol 69:1305–1307CrossRefPubMedGoogle Scholar
  9. Gänzle MG, Hertel C, Hammes WP (1995) Antimicrobial activity in lactobacilli from sourdough. In: Scheffers WA, van Dijken JP (eds) Beijerinck Centennial. Microbiol physiology and gene regulation: Emerging principles and applications. Delft University Press, Delft, pp 380–381Google Scholar
  10. Gänzle MG, Hertel C, Hammes WP (1999) Resistance of Escherichia coli and Salmonella against nisin and curvacin A. Int J Food Microbiol 48:37–50Google Scholar
  11. Gänzle MG, Höltzel A, Walter J, Jung G, Hammes WP (2000) Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl Environ Microbiol 66:4325–4333Google Scholar
  12. Gänzle MG, Ulmer HM, Vogel RF (2001) High pressure inactivation of Lactobacillus plantarum in a model beer system. J Food Sci 66:1174–1181Google Scholar
  13. Gänzle MG, Korakli M, Vogel RF (2002) Reutericyclin production during sourdough fermentation. In: 7th meeting on lactic acid bacteria, September 2002, Egmond aan ZeeGoogle Scholar
  14. Gao Y, van Belkum MJ, Stiles ME (1999) The outer membrane of Gram-negative bacteria inhibits antibacterial activity of brochocin-C. Appl Environ Microbiol 65:4329–4333PubMedGoogle Scholar
  15. Gitterman CO (1965) Antitumor, cytotoxic, and antibacterial activities of tenuazonic acid and congeneric tetramic acids. J Med Chem 8:483–486PubMedGoogle Scholar
  16. Hayashi N, Ito M, Horiike S, Taguchi H (2001) Molecular cloning of a putative divalent-cation transporter gene as a new genetic marker for the identification of Lactobacillus brevis strains capable of growing in beer. Appl Microbiol Biotechnol 55:596–603CrossRefPubMedGoogle Scholar
  17. Helander IM, Mattila-Sandholm T (2000) Permeability barrier of the Gram-negative bacterial outer membrane with special reference to nisin. Int J Food Microbiol 60:153–161Google Scholar
  18. Heng NCK, Bateup JM, Loach DM, Wu X, Jenkinson HF, Morrison M, Tannock GW (1999) Influence of different functional elements of plasmid pGT232 on maintenance of recombinant plasmids in Lactobacillus reuteri populations in vitro and in vivo. Appl Environ Microbiol 65:5378–5385PubMedGoogle Scholar
  19. Höltzel A, Ganzle MG, Nicholson GJ, Hammes WP, Jung G (2000) The first low molecular weight antibiotic from lactic acid bacteria: reutericyclin, a new tetramic acid. Angew Chem Int Ed Engl 39:2766–2768CrossRefPubMedGoogle Scholar
  20. Hugas M (1998) Bacteriocinogenic lactic acid bacteria for the biopreservation of meat and meat products. Meat Sci. 49:S139-S150Google Scholar
  21. Kabuki T, Saito T, Kawai Y, Uemura J, Itoh T (1997) Production, purification and characterization of reutericin 6, a bacteriocin with lytic activity produced by Lactobacillus reuteri LA6. Int J Food Microbiol 34:145–156CrossRefPubMedGoogle Scholar
  22. Kalchayanand N, Sikes A, Dunne CP, Ray B (1998) Factors influencing death and injury of foodborne pathogens by hydrostatic pressure-pasteurization. Food Microbiol 15:207–214Google Scholar
  23. Katla T, Naterstad K, Vancanneyt M, Swings J, Axelsson L (2003) Differences in susceptibility of Listeria monocytogenes strains to sakacin P, sakacin A, pediocin PA-1, and nisin. Appl Environ Microbiol 69:4431–4437CrossRefPubMedGoogle Scholar
  24. Konings WN (2002) The cell membrane and the struggle for life of lactic acid bacteria. Antonie van Leeuwenhoek 82:3–27CrossRefPubMedGoogle Scholar
  25. Lebrun MH, Nicolas L, Boutar M, Gaudemer F, Ranomenjanahary S, Gaudemer A (1988) Relationships between the structure and the phytotoxicity of the fungal toxin tenuazonic acid. Phytochemistry 27:77–84CrossRefGoogle Scholar
  26. Leroy F, de Vuyst L (2000) Sakacins. In: Naidu AS (ed) Natural food antimicrobial systems. CRC , Boca Raton, Florida, pp 589–610Google Scholar
  27. Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Moeller K (2002) Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690Google Scholar
  28. Lindgren SE, Dobrogosz WJ (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Rev 7:149–163PubMedGoogle Scholar
  29. Luthi-Peng Q, Dileme FB, Puhan Z (2002) Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Appl Microbiol Biotechnol 59:289–296CrossRefPubMedGoogle Scholar
  30. Marfori EC, Bamba T, Kajiyama S, Fukusaki E, Kobayashi A (2002) Biosynthetic studies of the tetramic acid antibiotic trichosetin. Tetrahedron 58:6655–6658CrossRefGoogle Scholar
  31. Marquardt U, Schmid D, Jung G (2000) Racemic synthesis of the new antibiotic tetramic acid reutericyclin. Syn Lett 8:1131–1132Google Scholar
  32. McAuliffe O, Ross RP, Hill C (2001) Lantibiotics: structure, biosynthesis, and mode of action. FEMS Microbiol Rev 25:285–308PubMedGoogle Scholar
  33. Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382–387PubMedGoogle Scholar
  34. Nikaido H (1996) Molecular architecture and assembly of cell parts. Outer membrane. In: Neidhardt FC (ed) Escherichia coli and Salmonella. ASM Press, Washington DC, pp 29–47Google Scholar
  35. Röcken W, Spicher G (1993) Fadenziehende Bakterien—Vorkommen, Bedeutung, Gegenmaßnahmen. Getreide Mehl Brot 47:30–35Google Scholar
  36. Rodriguez E, Arques JL, Rodriguez R, Nunez M, Medina M (2003) Reuterin production by lactobacilli isolated from pig faeces and evaluation of probiotic traits. Lett Appl Microbiol 37:259–263CrossRefPubMedGoogle Scholar
  37. Rosenkvist H, Hansen A (1995) Contamination profiles and characterisation of Bacillus species in wheat bread and raw materials for bread production. Int J Food Microbiol 26:353–363Google Scholar
  38. Rosenquist H, Hansen A (1998) The antimicrobial effect of organic acids, sour dough and nisin against Bacillus subtilis and B. licheniformis isolated from wheat bread. J Appl Microbiol 85:621–631CrossRefGoogle Scholar
  39. Ross RP, Morgan S, Hill C (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79:3–16CrossRefPubMedGoogle Scholar
  40. Royles BJL (1995) Naturally occurring tetramic acids: structure, isolation, and synthesis. Chem Rev 95:1981–2001Google Scholar
  41. Sakamoto K, Margolles A, van Veen HW, Konings WN (2001) Hop resistance in the beer spoilage bacterium Lactobacillus brevis is mediated by the ATP-binding cassette multidrug transporter HorA. J Bacteriol 183:5371–5375CrossRefPubMedGoogle Scholar
  42. Sakamoto K, van Veen HW, Saito H, Kobayashi H, Konings WN (2002) Membrane-bound ATPase contributes to hop resistance of Lactobacillus brevis. Appl Environ Microbiol 68:5374–5378PubMedGoogle Scholar
  43. Sami M, Suzuki K, Sakamoto K, Kadokura H, Kitamoto K, Yoda K (1998) A plasmid pRH45 of Lactobacillus brevis confers hop resistance. J Gen Appl Microbiol 44:361–363PubMedGoogle Scholar
  44. Simpson WJ (1993) Studies on the sensitivity of lactic acid bacteria to hop bitter acids. J Inst Brew 99:405–411Google Scholar
  45. Schillinger U, Geisen R, Holzapfel WH (1996) Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci Technol 7:158–164CrossRefGoogle Scholar
  46. Stickings CE, Townsend RJ (1961) Metabolites of Alternaria tenuis auct.: the biosynthesis of tenuazonic acid. Biochem J 78:412–418Google Scholar
  47. Stiles ME (1996) Biopreservation by lactic acid bacteria. Antonie van Leeuwenhoek 70:331–345Google Scholar
  48. Suzuki K, Sami M, Kadokura H, Nakajima H, Kitamoto K (2002) Biochemical characterization of horA-independent hop resistance mechanisms in Lactobacillus brevis. Int J Food Microbiol 76:223–230Google Scholar
  49. Tagg JR, Dajani AS, Wannamaker LW (1976) Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 40:722–756Google Scholar
  50. Talarico TL, Dobrogosz WJ (1989) Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob Agents Chemother 33:674–679PubMedGoogle Scholar
  51. Tannock GW, Chrichton C, Welling GW, Koopman JP, Midtvedt T (1988) Reconstitution of the gastrointestinal microflora of lactibacillus-free mice. Appl Environ Microbiol 54:2971–2975PubMedGoogle Scholar
  52. Toba T, Samant SK, Yoshioka E, Ito T (1991) Reutericin 6, a new bacteriocin produced by Lactobacillus reuteri LA6. Lett. Appl. Microbiol. 13:281–286Google Scholar
  53. Tungjaroenchai W, Drake MA, White CH (2001) Influence of adjunct cultures on ripening of reduced fat Edam cheeses. J Dairy Sci 84:2117–2124PubMedGoogle Scholar
  54. Vaara M (1993) Antibiotic-supersusceptible mutants of Escherichia coli and Salmonella typhimurium. Antimicrob Agents Chemother 47:2255–2260Google Scholar
  55. Vogel RF, Ehrmann MA, Gänzle MG (2002) Development and potential of starter lactobacilli resulting from exploration of the sourdough ecosystem. Antonie van Leeuwenhoek 81:631–638CrossRefPubMedGoogle Scholar
  56. Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP (2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:2578–2585CrossRefPubMedGoogle Scholar
  57. Walter J, Heng NCK, Hammes WP, Loach DM, Tannock GW, Hertel C (2003) Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Appl Environ Microbiol 69:2044–2051CrossRefPubMedGoogle Scholar
  58. Weiß A, Molnar P, Wolf G, Hammes WP (2001) Maßnahmen zur Reduzierung des hygienischen Risikos bei Keimlingen. In: Symposium Schnellmethoden und Automatisierung in der Lebensmittelmikrobiologie, Lemgo, July 2001Google Scholar
  59. Weiß A, Wolf G, Hammes WP (2002) Verbesserung der hygienischen Sicherheit von roh zu verzehrenden Keimlingen mit Hilfe von Schutzkulturen. In: 4. Fachsymposium der Fachgruppe Lebensmittelmikrobiologie, Karlsruhe March 2002Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Lehrstuhl Technische MikrobiologieTU MünchenFreising-WeihenstephanGermany

Personalised recommendations