Applied Microbiology and Biotechnology

, Volume 64, Issue 6, pp 848–854 | Cite as

Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta)

  • J. A. Del Campo
  • H. Rodríguez
  • J. Moreno
  • M. Á. Vargas
  • J. Rivas
  • M. G. GuerreroEmail author
Original Paper


When grown photoautotrophically, Chlorella zofingiensis strain CCAP 211/14 accumulates a significant amount of valuable carotenoids, namely astaxanthin and lutein, of increasing demand for use as feed additives in fish and poultry farming, as colorants in food, and in health care products. Under standard batch-culture conditions, this microalgal strain exhibits high values of both growth rate (about 0.04 h−1) and standing cell population (over 1011 cells l−1, or 7 g dry weight l−1). Lutein, in a free (unesterified) form, was the prevalent carotenoid during early stages of cultivation (over 0.3 pg cell−1, equal to 4 mg g−1 dry weight, or 20 mg l−1 culture), whereas esterified astaxanthin accumulated progressively, to reach a maximum (over 0.1 pg cell−1, equal to 1.5 mg g−1 dry weight, or 15 mg l−1 culture) in the late stationary phase. A differential response of lutein and astaxanthin accumulation was also recorded with regard to the action of some environmental and nutritional factors. C. zofingiensis CCAP 211/14 represents a unique model system for analyzing the differential regulation of the levels of primary (lutein) and secondary (astaxanthin) carotenoids. Relevant also from the biotechnological viewpoint, this photosynthetic organism, with outstanding attributes for fast photosynthetic growth and carotenoid accumulation, might prove most valuable for its application to the mass production of either or both lutein and astaxanthin.


Carotenoid Lutein Astaxanthin Total Carotenoid Canthaxanthin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The valuable technical assistance of M.J. Figueroa and A.M. Blanco is very much appreciated. This work was supported by Plan Nacional, Ministerio de Ciencia y Tecnología (grants BIO97-0577, PPQ2001-3832-C02-01, cofinanced with FEDER funds from the European Union) and Plan Andaluz de Investigación (group no. CVI 0131), Spain.


  1. Arnon DI, McSwain BD, Tsujimoto HY, Wada K (1974) Photochemical activity and components of membrane preparations from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin. Biochim Biophys Acta 357:231–245CrossRefPubMedGoogle Scholar
  2. Astorg P (1997) Food carotenoids and cancer prevention: an overview of current research. Trends Food Sci Technol 8:406–413CrossRefGoogle Scholar
  3. Bar E, Rise M, Vishkantsan M, Arad S (1995) Pigment and structural changes in Chlorella zofingiensis upon light and nitrogen stress. J Plant Physiol 146:527–534Google Scholar
  4. Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117CrossRefGoogle Scholar
  5. Boussiba S, Vonshak A (1991) Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol 32:1077–1082Google Scholar
  6. Del Campo JA, Moreno J, Rodríguez H, Vargas MA, Rivas J, Guerrero MG (2000) Carotenoid content of chlorophycean microalgae. Factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76:51–59CrossRefPubMedGoogle Scholar
  7. Del Campo JA, Rodríguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2001) Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol 81:289–295Google Scholar
  8. Demming-Adams B, Adams III WW (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153CrossRefPubMedGoogle Scholar
  9. Dwyer JH, Navab M, Dwyer KM, Hassan K, Sun P, Shircore A, Hama-Levy S, Hough G, Wang X, Drake T, Merz NB, Fogelman AM (2001) Oxygenated carotenoid lutein and the progression of early atherosclerosis. The Los Angeles atherosclerosis study. Circulation 103:2922–2927PubMedGoogle Scholar
  10. Granado F, Olmedilla B, Blanco I (2003) Nutritional and clinical relevance of lutein in human health. Br J Nutr 90:487–502CrossRefPubMedGoogle Scholar
  11. Grünewald K, Hirschberg J, Hagen C (2001) Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. J Biol Chem 276:2063–2069Google Scholar
  12. Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216CrossRefPubMedGoogle Scholar
  13. Harker H, Tsavalos AJ, Young AJ (1996) Autotrophic growth and carotenoid production of Haematococcus pluvialis in a 30-liter airlift photobioreactor. J Ferment Bioeng 82:113–118CrossRefGoogle Scholar
  14. Hirschberg J, Cohen H, Harker H, Lotan T, Mann V, Pecker I (1997) Molecular genetics of the carotenoid biosynthesis pathway in plants and algae. Pure Appl Chem 69:2151–2158Google Scholar
  15. Johnson EA, Schroeder WA (1995) Microbial carotenoids. In: Fiechter A (ed) Advances in biochemical engineering. (Biotechnology, vol 53) Springer-, Berlin Heidelberg New York, pp 119–178Google Scholar
  16. Kim HW, Chew BP, Wong TS, Park JS, Weng BBC, Byrne KM, Hayek MG, Reinhart GA (2000) Dietary lutein stimulates immune response in the canine. Vet Immunol Immunopathol 74:315–327CrossRefPubMedGoogle Scholar
  17. Krinsky NI, Landrum JT, Bone RA (2003) Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr 23:171–201CrossRefPubMedGoogle Scholar
  18. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167CrossRefPubMedGoogle Scholar
  19. Mares-Perlman JA, Millen AE, Ficek TL, Hankinson SE (2002) The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. Overview. J Nutr 132:5185–5245Google Scholar
  20. Margalith PZ (1999) Production of ketocarotenoids by microalgae. Appl Microbiol Biotechnol 51:431–438CrossRefPubMedGoogle Scholar
  21. Mínguez-Mosquera MI, Gandul-Rojas B, Gallardo-Guerrero ML (1992) Rapid method of quantification of chlorophylls and carotenoids in virgin olive oil by high-performance liquid chromatography. J Agric Food Chem 40:60–63Google Scholar
  22. Olmedilla B, Granado F, Blanco I, Vaquero M (2003) Lutein, but not α-tocopherol, supplementation improves visual function in patients with age-related cataracts: a 2-y double-blind, placebo-controlled pilot study. Nutrition 19:21–24CrossRefPubMedGoogle Scholar
  23. Rise M, Cohen E, Vishkantsan M, Cojoearn H, Gottlieb HE, Arad S (1994) Accumulation of secondary carotenoids in Chlorella zofingiensis. J Plant Physiol 144:287–292Google Scholar
  24. Tjahjono AE, Hayama Y, Kakizono T, Terada Y, Nishio N, Nagai S (1994) Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotechnol Lett 16:133–138Google Scholar
  25. Zhang D, Lee Y (1999) Ketocarotenoid production by a mutant of Chlorococcum sp. in an outdoor tubular photobioreactor. Biotechnol Lett 21:7–10Google Scholar
  26. Zhang DH, Lee YK, Ng ML, Phang SM (1997) Composition and accumulation of secondary carotenoids in Chlorococcum sp. J Appl Physiol 9:147–155CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • J. A. Del Campo
    • 1
  • H. Rodríguez
    • 1
  • J. Moreno
    • 1
  • M. Á. Vargas
    • 1
  • J. Rivas
    • 1
  • M. G. Guerrero
    • 1
    Email author
  1. 1.Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la CartujaConsejo Superior de Investigaciones Científicas–Universidad de SevillaSevillaSpain

Personalised recommendations