Applied Microbiology and Biotechnology

, Volume 64, Issue 2, pp 175–186

Biotechnological advantages of laboratory-scale solid-state fermentation with fungi

Mini-Review

Abstract

Despite the increasing number of publications dealing with solid-state (substrate) fermentation (SSF) it is very difficult to draw general conclusion from the data presented. This is due to the lack of proper standardisation that would allow objective comparison with other processes. Research work has so far focused on the general applicability of SSF for the production of enzymes, metabolites and spores, in that many different solid substrates (agricultural waste) have been combined with many different fungi and the productivity of each fermentation reported. On a gram bench-scale SSF appears to be superior to submerged fermentation technology (SmF) in several aspects. However, SSF up-scaling, necessary for use on an industrial scale, raises severe engineering problems due to the build-up of temperature, pH, O2, substrate and moisture gradients. Hence, most published reviews also focus on progress towards industrial engineering. The role of the physiological and genetic properties of the microorganisms used during growth on solid substrates compared with aqueous solutions has so far been all but neglected, despite the fact that it may be the microbiology that makes SSF advantageous against the SmF biotechnology. This review will focus on research work allowing comparison of the specific biological particulars of enzyme, metabolite and/or spore production in SSF and in SmF. In these respects, SSF appears to possess several biotechnological advantages, though at present on a laboratory scale only, such as higher fermentation productivity, higher end-concentration of products, higher product stability, lower catabolic repression, cultivation of microorganisms specialized for water-insoluble substrates or mixed cultivation of various fungi, and last but not least, lower demand on sterility due to the low water activity used in SSF.

References

  1. Acuna-Arguelles ME, Gutierrez-Rojas M, Viniegra-González G, Favela-Torres E (1995) Production and properties of three pectinolytic activities produced by Aspergillus niger in submerged and solid-state fermentation. Appl Microbiol Biotechnol 43:808–814CrossRefPubMedGoogle Scholar
  2. Adams TT, Eiteman MA, Hanel BM (2002) Solid state fermentation of broiler litter for production of biocontrol agents. Bioresour Technol 82:33–41CrossRefPubMedGoogle Scholar
  3. Aguilar CN, Augur C, Favela-Torres E, Viniegra-González G (2001) Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: influence of glucose and tannic acid. J Ind Microbiol Biotechnol 26:296–302Google Scholar
  4. Alberto AA de, Pastore GM, Berger RG (2002) Production of coconut aroma by fungi in solid-state fermentation. Appl Biochem Biotechnol 98–100:747–751Google Scholar
  5. Arenskötter M, Baumeister D, Bröker D, Hölker U, Ibrahim EMA, Lenz J, Karsten K, Steinbüchel A (2003) Entwicklung eines biotechnologischen Verfahrens zur stofflichen Wiederverwertung kautschukhaltiger Rest- und Abfallstoffe. In: Heiden S, Erb R (eds) Transkript Sonderheft, Nachhaltige Biokatalyse. DBU, Osnabruck, pp 28–32Google Scholar
  6. Ashokkumar B, Gunasekaran P (2002) β-Fructofuranosidase production by 2-deoxyglucose resistant mutants of Aspergillus niger in submerged and solid-state fermentation. Indian J Exp Biol 40:1032–1037PubMedGoogle Scholar
  7. Ashokkumar B, Kayalvizhi N, Gunasekaran P (2001) Optimization of media for β-fructofuranosidase production by Aspergillus niger in submerged and solid state fermentation. Process Biochem 37:331–338CrossRefGoogle Scholar
  8. Asther M, Haon M, Roussos S, Record E, Delattre M, Lesage-Meessen L, Labat M, Asther M (2002) Feruloyl esterase from Aspergillus niger: a comparison of the production in solid state and submerged fermentation. Process Biochem 38:685–691CrossRefGoogle Scholar
  9. Babu KR, Satyanarayana T (1996) Production of bacterial enzymes by solid state fermentation. J Sci Ind Res 55:464–467Google Scholar
  10. Bakri Y, Jacques P, Thonart P (2003) Xylanase production by Penicillium caescens 10–10c in solid-state fermentation. Appl Biochem Biotechnol 108:737–748CrossRefGoogle Scholar
  11. Balakrishnan K, Pandey A (1996) Production of biologically active secondary metabolites in solid state fermentation. J Sci Ind Res 55:365–372Google Scholar
  12. Baldrian P, Gabriel J (2002) Variability of laccase activity in the white-rot basidiomycete Pleurotus ostreatus. Folia Microbiol 47:385–390Google Scholar
  13. Barrios-Gonzalez J, Mejía A (1996) Production of secondary metabolites by solid-state fermentation. Biotechnol Annu Rev 2:85–88PubMedGoogle Scholar
  14. Barrios-Gonzalez J, Tomasini A (1996) Production of aflatoxines in solid state fermentation. J Sci Ind Res 55:424–430Google Scholar
  15. Barrios-Gonzalez J, Castillo TE, Mejia A (1993) Development of high penicillin producing strains for solid state fermentation. Biotechnol Adv 11:525–537Google Scholar
  16. Becerra M, Gonzalez Siso MI (1996) Yeast β-galactosidase in solid-state fermentations. Enz Microb Technol 19:39–44CrossRefGoogle Scholar
  17. Beg QK, Bhushan B, Kapoor M, Hoondal GS (2000) Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11–3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb Technol 27:459–466CrossRefPubMedGoogle Scholar
  18. Benjamin S, Pandey A (1997) Coconut cake—a potent substrate for the production of Lipase by Candida rugosa in solid-state fermentation. Acta Biotechnol 17:241–251Google Scholar
  19. Biesebeke R te, Ruijter G, Rahardjo YSP, Hoogschagen MJ, Heerikhuisen M, Levin A, van Driel KGA, Schutyser MAI, Dijksterhuis J, Zhu Y, Weber FJ, de Vos WM, van den Hondel KAMJJ, Rinzema A, Punt PJ (2002) Aspergillus oryzae in solid state fermentation. FEMS Yeast Res 2:245–248CrossRefPubMedGoogle Scholar
  20. Blandino A, Iqbalsyah T, Pandiella SS, Cantero D, Webb C (2002) Polygalacturonase production by Aspergillus awamori on wheat in solid-state fermentation. Appl Microbiol Biotechnol 58:164–169PubMedGoogle Scholar
  21. Bockelmann W, Protius S, Lick S, Heller KJ (1999) Sporulation of Penicillium camemberti in submerged batch culture. System Appl Microbiol 22:479–485Google Scholar
  22. Carlile MJ, Watkinson SC (1994) The Fungi. Academic Press, San Diego, CalifGoogle Scholar
  23. Castillo MR, Gutierrez-Correa M, Linden JC, Tengerdy RP (1994) Mixed culture solid substrate fermentation for cellulolytic enzyme production. Biotechnol Let 16:967–972Google Scholar
  24. Cen P, Xia L (1999) Production of cellulase by solid-state fermentation. Adv Biochem Eng 65:69–92Google Scholar
  25. Christen P, Bramorski A, Revah S, Soccol CR (2000) Characterization of volatile compounds produced by Rhizopus strains grown on agro-industrial solid wastes. Bioresour Technol 71:211–215CrossRefGoogle Scholar
  26. Dartora AB, Bertolin TE, Bilibio D, Silveira MM, Costa JAV (2002) Evaluation of filamentous fungi and inducers for the production of endo-polygalacturonase by solid state fermentation. Z Naturforsch 57:666–670Google Scholar
  27. Deschamps F, Huet MC (1985) Xylanase production in solid-state fermentation: a study of its properties. Appl Microbiol Biotechnol 22:177–180Google Scholar
  28. Deshpande MV (1999) Mycopesticide production by fermentation: potential and challenges. CRC Microbiol 25:229–243Google Scholar
  29. Dey S, Agarwal SO (1999) Characterization of a theromostable alpha amylase from a thermophilic Streptomyces megasporus strain SD12. Indian J Biochem Biophys 36:150–157PubMedGoogle Scholar
  30. Díaz-Godínez G, Soriano-Santos J, Augur C, Viniegra-González G (2001) Exopectinases produced by Aspergillus niger in solid-state and submerged fermentation: a comparative study. J Ind Microbiol Biotechnol 26:271–275Google Scholar
  31. Elibol M, Muvituna F (1997) Characteristics of antibiotic production in a multiphase system. Process Biochem 35:85–90Google Scholar
  32. Elinbaum S, Ferreyra H, Ellenrieder G, Cuevas C (2002) Production of Aspergillus terreus α-l-rhamnosidase by solid state fermentation. Lett Appl Microbiol 34:67–71CrossRefPubMedGoogle Scholar
  33. Ellaiah P, Srinivasulu B, Adinarayana K (2003) Optimisation studies on neomycin production by a mutant strain of Streptomyces marinensis in solid state fermentation. Process Biochem (in press) DOI 10.1016/s0032-9592(02)00059-6Google Scholar
  34. Fan L, Pandey A, Mohan R, Soccol CR (2000) Use of various coffee industry residues for the cultivation of Pleurotus ostreatus in solid state fermentation. Acta Biotechnol 20:41–52Google Scholar
  35. Favela-Torres E, Cordova-Lopez J, Garcia-Rivero M, Gutierrez-Rojas M (1998) Kinetics of growth of Aspergillus niger during submerged, agar surface and solid state fermentations. Process Biochem 33:103–107CrossRefGoogle Scholar
  36. Fenice M, Sermanni GG, Federici F, D‘Annibale A (2003) Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media. J Biotechnol 100:77–85CrossRefPubMedGoogle Scholar
  37. Filer K (2001) The newest old way to make enzymes. Feed Mix 9:27–29Google Scholar
  38. Frandberg E, Peterson C, Lundgren LN, Schnurer J (2000) Streptomyces halstedii K122 produces antifungal compounds bafilomycin B1 and C1. Can J Microbiol 46:753–758CrossRefPubMedGoogle Scholar
  39. Frey S, Magan N (2001) Production of the fungal biocontrol agent Ulocladium atrum by submerged fermentation: accumulation of endogenous reserves and shelf-life studies. Appl Microbiol Biotechnol 56:372–377CrossRefPubMedGoogle Scholar
  40. Fu S-G, Yoon Y, Bazemore R (2002) Aroma-active compounds in fermented bamboo shoots. J Agric Food Chem 50:549–554Google Scholar
  41. Fujian X, Hongzhang C, Zuohu L (2001) Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresour Technol 80:149–151CrossRefPubMedGoogle Scholar
  42. Gautam P, Sabu A, Pandey A, Szakacs G, Soccol CR (2002) Microbial production of extra-cellular phytase using polystyrene as inert solid support. Bioresour Technol 83:229–233CrossRefPubMedGoogle Scholar
  43. Germano S, Pandey A, Osaku CA, Rocha SN, Soccol CR (2003) Characterization and stability of proteases from Penicillium sp produced by solid-state fermentation. Enzyme Microb Technol 32:246–251CrossRefGoogle Scholar
  44. Gupte A, Madamwar D (1997) Solid state fermentation of lignocellulosic waste for cellulase and β-glucosidase production by cocultivation of Aspergillus ellipticus and Aspergillus fumigatus. Biotechnol Prog 13:166–169CrossRefGoogle Scholar
  45. Gutierrez-Correa M, Tengerdy RP (1997) Production of cellulase on sugar cane bagasse by fungal mixed culture solid substrate fermentation. Biotechnol Lett 19:665–667CrossRefGoogle Scholar
  46. Gutierrez-Correa M, Tengerdy RP (1998) Xylanase production by fungal mixed culture solid substrate fermentation on sugar cane bagasse. Biotechnol Lett 20:45–47Google Scholar
  47. Gutierrez-Correa M, Portal L, Moreno P, Tengerdy RP (1999) Mixed culture solid substrate fermentation of Trichoderma reesei with Aspergillus niger on sugar cane bagasse. Bioresour Technol 68:173–178CrossRefGoogle Scholar
  48. Han B-Z, Rombouts FM, Nout MJR (2001) A Chinese fermented soybean food. Int J Food Microbiol 65:1–10Google Scholar
  49. Harris JP, Mantle PG (2001) Biosynthesis of ochratoxins by Aspergillus ochraceus. Phytochemistry 58:709–716CrossRefPubMedGoogle Scholar
  50. Hernández MRT, Lonsane BK, Raimbault M, Roussos S (1993) Spectra of ergot alkaloids produced by Claviceps purpurea 1029c in solid-state fermentation system: influence of the composition of liquid medium used for impregnation sugar-cane pith bagasse. Process Biochem 28:23–27Google Scholar
  51. Hölker U (2000) Bioreactor for fermenting solids. Patent PCT WO 01/19954Google Scholar
  52. Hölker U (2002) Bioreactor having at least two reaction chambers. Patent WO 02/100999 A3Google Scholar
  53. Hölker U (2003a) Kultivierungsverfahren für Mikroorganismen und Bioreaktor. Patent PCT/EPO3/01663Google Scholar
  54. Hölker U (2003b) Fermentation auf festen Substraten. BioTec 3–4:32–33Google Scholar
  55. Hölker U, Höfer M (2002) Solid substrate fermentation of lignite by the coal solubilizing mould Trichoderma atroviride in a new type of bioreactor. Biotechnol Lett 24:1643–1645CrossRefGoogle Scholar
  56. Hongzhang C, Fujian X, Zhonghou T, Zuohu L (2002) A novel industrial-level reactor with two dynamic changes of air for solid-state fermentation. J Biosci Bioeng 93:211–214CrossRefGoogle Scholar
  57. Hsu FL, Wang PM, Lu SY, Wu WT (2002) A combined solid-state and submerged cultivation integrated with adsorptive product extraction for production of Monascus red pigments. Bioprocess Biosyst Eng 25:165–168CrossRefPubMedGoogle Scholar
  58. Ishida H, Hata Y, Kawato A, Abe Y, Suginami K, Imayasu S (2000) Identification of functional elements that regulate the glucoamylase-encoding gene (glab) expressed in solid-state culture of Aspergillus oryzae. Curr Genet 37:373–379PubMedGoogle Scholar
  59. Jain A (1995) Production of xylanase by thermophilic Melanocarpus albomyces IIS-68. Process Biochem 30:705–709CrossRefGoogle Scholar
  60. Jermini MFG, Demain AL (1989) Solid state fermentation for cephalosporin production by Streptomyces clavuligerus and Cephalosporin acremonium. Experientia 45:1061–1065PubMedGoogle Scholar
  61. Johns MR, Stuart DM (1991) Production of pigments by Monascus purpureus in solid culture. J Ind Microbiol 8:23–28Google Scholar
  62. Juzlova P, Martinkova L, Kren V (1996) Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol 16:163–170Google Scholar
  63. Kapoor M, Kuhad RC (2002) Improved polygalacturonase production from Bacillus sp. MG-cp-2 under submerged (SmF) and solid state (SSF) fermentation. Lett Appl Microbiol 34:317–322CrossRefPubMedGoogle Scholar
  64. Kar B, Banerjee R (2000) Biosynthesis of tannin acyl hydrolase from tannin-rich forest residue under different fermentation conditions. J Ind Microbiol Biotechnol 25:29–38Google Scholar
  65. Kar B, Banerjee R, Bhattacharyya BC (1999) Microbial production of gallic acid by modified solid state fermentation. J Ind Microbiol Biotechnol 23:173–177Google Scholar
  66. Kashyap DR, Soni SK, Tewari R (2003) Enhanced production of pectinase by Bacillus subtilis using solid state fermentation. Bioresour Technol 88:251–254CrossRefPubMedGoogle Scholar
  67. Kelecom A (2002) Secondary metabolites from marine microorganisms. Ann Acad Bras Cienc 74:151–170Google Scholar
  68. Koroleva OV, Gavrilova VP, Stepanova EV, Lebedeva VI, Sverdlova NI, Landesman EO, Yavmetdinov IS, Yaropolov AI (2002) Production of lignin modifying enzymes by co-cultivated white-rot fungi Cerrena maxima and Coriolus hirsutus and characterization of laccase from Cerrena maxima. Enzyme Microb Technol 30:573–580CrossRefGoogle Scholar
  69. Kota KP, Sridhar P (1998) Solid state cultivation of Streptomyces clavuligerus for producing cephamycin C. J Sci Ind Res 57:587–590Google Scholar
  70. Krishna C (1999) Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresour Technol 69:231–239CrossRefGoogle Scholar
  71. Krishna C, Nokes SE (2001) Predicting vegetative inoculum performance to maximize phytase production in solid-state fermentation using response surface methodology. J Ind Microbiol Biotechnol 26:161–170Google Scholar
  72. Krishna PS, Venkateswarlu G, Pandey A, Rao LV (2003) Biosynthesis of rifamycin SV by Amycolatopsis mediterranei MTCC17 in solid cultures. Biotechnol Appl Biochem 37:311–315CrossRefPubMedGoogle Scholar
  73. Kumar D, Jain VK, Shanker G, Srivastava A (2003) Utilisation of fruit wastes for citric acid production by solid state fermentation. Process Biochem (in press)Google Scholar
  74. Lapadatescu C, Bonnarme P (1999) Production of aryl metabolites in solid-state fermentations of the white-rot fungus Bjerkandera adusta. Biotechnol Lett 21:763–769Google Scholar
  75. Larroche C, Gros JB (1989) Strategies for spore production by Penicillium roquefortii using solid state fermentation techniques. Process Biochem 24:97–103Google Scholar
  76. Machado CM, Soccol CR, de Oliveira BH, Pandey A (2002) Giberellic acid production by solid-state fermentation in coffee husk. Appl Biochem Biotechnol 102–103:179–191Google Scholar
  77. Mahadik ND, Puntambekar US, Bastawde KB, Khire JM, Gokhale DV (2002) Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochem 38:715–721CrossRefGoogle Scholar
  78. Maldonado MC, Strasser de Saad AM (1998) Production of pectinesterase and polygalacturonase by Aspergillus niger in submerged and solid state systems. J Ind Microbiol Biotechnol 20:34–38PubMedGoogle Scholar
  79. Mamo G, Gessesse A (1999) Production of raw-starch digesting amyloglucosidase by Aspergillus sp GP-21 in solid state fermentation. J Ind Microbiol Biotechnol 22:622–626Google Scholar
  80. Mandviwala TN, Khire JM (2000) Production of high activity thermostable phytase from thermotolerant Aspergillus niger in solid state fermentation. J Ind Microbiol Biotechnol 24:237–243Google Scholar
  81. Martins ES, Silva D, da Silva R, Gomes E (2002) Solid state production of thermostable pectinase from thermophilic Thermoascus aurantiacus. Process Biochem 37:949–954CrossRefGoogle Scholar
  82. Massadeh MI, Yusoff WMW, Omar O, Kader J (2001) Synergism of cellulase enzymes in mixed culture solid substrate fermentation. Biotechnol Let 23:1771–1774CrossRefGoogle Scholar
  83. Mitchell DA, Krieger N, Stuart DM, Pandey A (2000a) New developments in solid-state fermentation: II. Rational approaches to design, operation and scale-up of bioreactors. Process Biochem 35:1211–1225CrossRefGoogle Scholar
  84. Mitchell DA, Berovic M, Krieger N (2000b) Biochemical engineering of solid state bioprocessing. Adv Biochem Eng Biotechnol 68:61–138PubMedGoogle Scholar
  85. Mitchell DA, Berovic M, Krieger N (2002) Overview of solid state bioprocessing. Biotechnol Annu Rev 8:183–225PubMedGoogle Scholar
  86. Montiel-Gonzalez AM, Fernandez FJ, Viniegra-Gonzalez G, Loera O (2002) Invertase production on solid-state fermentation by Aspergillus niger strains by parasexual recombination. Appl Biochem Biotechnol 102–103:63–70Google Scholar
  87. Munoz GA, Agosin E, Cotoras M, San Martin R, Volpe D (1995) Comparison of aerial and submerged spore properties for Trichoderma harzianum. 125:63–70Google Scholar
  88. Nandakumar MP, Thakur MS, Raghavaro KSMS, Ghildyal NP (1999) Studies on catabolite repression in solid state fermentation for biosynthesis of fungal amylases. Let Appl Microbiol 29:380–384CrossRefGoogle Scholar
  89. Nigam P, Singh D (1996a) Processing of agricultural wastes in solid state fermentation for microbial protein production. J Sci Ind Res 55:373–380Google Scholar
  90. Nigam P, Singh D (1996b) Processing of agricultural wastes in solid state fermentation for cellulolytic enzymes production. J Sci Ind Res 55:457–463Google Scholar
  91. Nout MJR, Aidoo KE (2002) Asian fungal fermented food. In: Osiewacz X (ed) The Mycota. Springer, Berlin Heidelberg New York, pp 23–47Google Scholar
  92. Ohno A, Ano T, Shoda M (1993) Production of the antifungal peptide, iturin, by Bacillus subtilis NB22 using wheat bran as substrate. J Ferment Bioeng 75:23–27CrossRefGoogle Scholar
  93. Ohno A, Ano T, Shoda M (1996) Use of soybean curd residue, okara, for the solid state substrate in the production of a lipopeptide antibiotic, iturin A, by Bacillus subtilis NB 22. Process Biochem 31:801–806CrossRefGoogle Scholar
  94. Ooijkaas LP, Weber F, Buitelaar RM, Tramper J, Rinzema A (2000) Defined media and inert supports: their potential as solid-state fermentation production system. Trends Biotechnol 18:356–360CrossRefPubMedGoogle Scholar
  95. Oostra J, Tramper J, Rinzema A (2000) Model-based bioreactor selection for large-scale solid-state cultivation of Coniothyrium minitans spores on oats. Enzyme Microb Technol 27:652–663CrossRefPubMedGoogle Scholar
  96. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84CrossRefGoogle Scholar
  97. Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid state fermentation for the production of industrial enzymes. Curr Sci 77:149–162Google Scholar
  98. Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation. I Processes and products. Process Biochem 35:1153–1169PubMedGoogle Scholar
  99. Pandey A, Soccol CR, Rodriguez-Leon JA, Nigam P (2001) Solid-state fermentation in biotechnology: fundamentals and applications. Asiatech, New DelhiGoogle Scholar
  100. Panagiotou G, Kekos D, Macris BJ, Christakopoulos P (2003) Production of cellulolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind Crops Prod 18:37–45CrossRefGoogle Scholar
  101. Papagianni M, Nokesa SE, Filer K (1999) Production of phytase by Aspergillus niger in submerged and solid-state fermentation. Process Biochem 35:397–402CrossRefGoogle Scholar
  102. Park YS, Kang SW, Lee JS, Hong SI, Kim SW (2002) Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl Microbiol Biotechnol 58:761–766CrossRefPubMedGoogle Scholar
  103. Pascual S, de Cal A, Magan N, Melgarejo P (2000) Surface hydrophobicity, viability and efficacy in biological control of Penicillium oxalicum spores produced in aerial and submerged culture. J Appl Microbiol 89:847–853CrossRefPubMedGoogle Scholar
  104. Raimbault M (1998) General and microbiological aspects of solid substrate fermentation. Electronic J Biotechnol 1:1–15Google Scholar
  105. Ramana Murthy MV, Mohan EVS, Sadhukhan AK (1999) Cyclosporin A production by Tolypocladium inflatum using solid state fermentation. Process Biochem 34:269–280CrossRefGoogle Scholar
  106. Reddy GV, Babu PR, Komaraiah P, Roya KRRM, Kothari IL (2003) Utilization of banana waste for the production of ligninolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem 38:1457–1462CrossRefGoogle Scholar
  107. Rehm HJ (1967) Industrielle Mikrobiologie. Springer, Berlin Heidelberg New YorkGoogle Scholar
  108. Reyes-Moreno C, Romero-Urías C, Milán-Carrillo J, Valdéz-Torres B, Zárate-Márquez E (2000) Optimization of the solid state fermentation process to obtain tempeh from hardened chickpeas (Cicer arietinum L.). Plant Foods Hum Nutr 55:219–228CrossRefPubMedGoogle Scholar
  109. Robinson T, Singh D, Nigam P (2001) Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol 55:284–289CrossRefPubMedGoogle Scholar
  110. Robinson T, Chandran B, Nigam P (2002) Studies on desorption of individual textile dyes and a synthetic dye effluent from dye-adsorbed agricultural residues using solvents. Bioresour Technol 84:299–301CrossRefPubMedGoogle Scholar
  111. Romero-Gomez SJ, Augur C, Viniegra-Gonzalez G (2000) Invertase production by Aspergillus niger in submerged and solid-state fermentation. Biotechnol Lett 22:1255–1258CrossRefGoogle Scholar
  112. Sadhukhan AK, Ramana Murthy MV, Ajaya Kumar R, Mohan EVS, Vandana G, Bhar C, Venkateswara Rao K (1999) Optimization of mycophenolic acid production in solid state fermentation using response surface methodology. J Ind Microbiol Biotechnol 22:33–38Google Scholar
  113. Sarhy-Bagnon VV, Lozano P, Saucedo-Castaneda G, Roussos S (2000) Production of 6-pentyl-α-pyrone by Trichoderma harzianum in liquid and solid state cultures. Process Biochem 36:103–109CrossRefGoogle Scholar
  114. Segeth MP, Bonnefoy A, Bronstrup M, Knauf M, Schummer D, Toti L, Vertesy L, Wetzel-Raynal MC, Wink J, Seibert G (2003) Coniosetin a novel tetramic antibiotic from Coniochaeta ellipsoidea DSM 13856. J Antibiot 56:114–122PubMedGoogle Scholar
  115. Selvakumar P, Ashakumary L, Pandey A (1998) Biosynthesis of glucoamylase from Aspergillus niger by solid-state fermentation using tea waste as the basis of solid substrate. Bioresour Technol 65:83–85CrossRefGoogle Scholar
  116. Solis-Pereira S, Favela-Torres E, Viniegra-Gonzalez G, Gutierrez-Rojas M (1993) Effect of different carbon sources on the synthesis of pectinases in Aspergillus niger in submerged and solid state fermentation. Appl Microbiol Biotechnol 39:36–41Google Scholar
  117. Souza JVB, Silva ES, Maia MLS, Teixeira MFS (2003) Screening of fungal strains for pectinolytic activity: endopolygalacturonase production by Peacilomyces clavisporus 2A.UMIDA.1. Process Biochem 39:455–458CrossRefGoogle Scholar
  118. Stepanova EV, Koroleva OV, Vasilchenko LG, Karapetyan KN, Landesman EO, Yavmetdinov IS, Kozlov YP, Ranbinovich ML (2003) Fungal decomposition of oat straw during liquid and solid-state fermentation. Appl Biochem Microbiol 39:65–74CrossRefGoogle Scholar
  119. Su YC, Wang JJ, Lin TT (2003) Production of secondary metabolites γ-aminobutyric acid and monacolin K by Monascus. J Ind Microbiol Biotechnol 30:41–46PubMedGoogle Scholar
  120. Tarangano VM, Pilosofa AMR (1999) Application of Doehlert designs for water activity, pH, and fermentation time optimization for Aspergillus niger pectinolytic activities production in solid-state and submerged fermentation. Enzyme Microb Technol 25:411–419CrossRefGoogle Scholar
  121. Tengerdy RP (1996) Cellulase production by solid substrate fermentation. J Sci Ind Res 55:313–316Google Scholar
  122. Tengerdy RP, Szakacs G (2003) Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J 13:169–179CrossRefGoogle Scholar
  123. Tomasini A, Fajardo C, Barrios-Gonzalez J (1997) Giberellic acid production using different solid state fermentation systems. World J Microbiol Biotechnol 13:203–206Google Scholar
  124. Ul-Haq I, Idrees S, Rajoka MI (2002) Production of lipases by Rhizopus oligosporus by solid-state fermentation. Process Biochem 37:637–641CrossRefGoogle Scholar
  125. Venkateswarlu G, Murali Krishna PS, Pandey A, Rao LV (2000) Evaluation of Amycolatopsis mediterranei VA18 for production of rifamycin-B. Process Biochem 37:331–338Google Scholar
  126. Viniegra-Gonzalez G, Favela-Torres E, Aguilar CN, Romero-Gomez S, Diaz-Godinez G, Augur C (2003) Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem Eng J 13:157–167CrossRefGoogle Scholar
  127. Wang HH (1999) Development and/or reclamation of bioresources with solid state fermentation. Proc Natl Sci Counc ROC B 23:45–61Google Scholar
  128. Yang SS, Ling MY (1989) Tetracycline production with sweet potato residues by solid state fermentation. Biotechnol Bioeng 33:1021–1028Google Scholar
  129. Yang SS, Wang JY (1996) Morphogenesis, ATP content and oxytetracyline production by Streptomyces rimosus in solid substrate cultivation. J Appl Bacteriol 80:545–550PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Institut für Zelluläre und Molekulare BotanikUniversität BonnBonnGermany
  2. 2.Bioreact GmbHBonnGermany

Personalised recommendations