Applied Microbiology and Biotechnology

, Volume 63, Issue 6, pp 635–646 | Cite as

Production of lipid compounds in the yeast Saccharomyces cerevisiae

Mini-Review

Abstract

This review describes progress using the yeast Saccharomyces cerevisiae as a model organism for the fast and efficient analysis of genes and enzyme activities involved in the lipid biosynthetic pathways of several donor organisms. Furthermore, we assess the impact of baker′s yeast on the production of novel, high-value lipid compounds. Yeast can be genetically modified to produce selected substances in relatively high amounts. A major advantage in choosing yeast as an object for metabolic engineering is the fact that the lipid pathways in this organism have been described in detail and are well characterized. We focus on the de novo production of three major families of lipid products. These are: (1) sterols, providing some previously known and some novel applications as examples of the lipid pathway enhancement that occurs naturally in yeast, (2) the reconstitution of the biosynthetic pathway of steroid hormones and (3) the biosynthesis of polyunsaturated fatty acids, leading to the biosynthesis of different omega-3 and omega-6 fatty acids which do not occur naturally in yeast. We utilize the current knowledge and point out perspectives and problems for future biotechnological applications in the field of lipid compounds.

References

  1. Aki T, Shimada Y, Inagaki K, Higashimoto H, Kawamoto S, Shigeta S, Ono K, Suzuki O (1999) Molecular cloning and functional characterization of rat delta-6 fatty acid desaturase. Biochem Biophys Res Commun 255:575–579CrossRefPubMedGoogle Scholar
  2. Alvarez HM, Steinbuchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376CrossRefPubMedGoogle Scholar
  3. Arnezeder C, Hampel WA (1990) Influence of growth rate on the accumulation of ergosterol in yeast-cells. Biotechnol Lett 12:277–282Google Scholar
  4. Bach AC, Ferezou J, Frey A (1996) Phospholipid-rich particles in commercial parenteral fat emulsions. An overview. Prog Lipid Res 35:133–153CrossRefPubMedGoogle Scholar
  5. Bagga D, Anders KH, Wang HJ, Glaspy JA (2002) Long-chain n-3-to-n-6 polyunsaturated fatty acid ratios in breast adipose tissue from women with and without breast cancer. Nutr Cancer 42:180–185PubMedGoogle Scholar
  6. Bammert GF, Fostel JM (2000) Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicrob Agents Chemother 44:1255–1265PubMedGoogle Scholar
  7. Bard M, Lees ND, Turi T, Craft D, Cofrin L, Barbuch R, Koegel C, Loper JC (1993) Sterol synthesis and viability of erg11 (cytochrome P450 lanosterol demethylase) mutations in Saccharomyces cerevisiae and Candida albicans. Lipids 28:963–967PubMedGoogle Scholar
  8. Baudry K, Swain E, Rahier A, Germann M, Batta A, Rondet S, Mandala S, Henry K, Tint GS, Edlind T, Kurtz M, Nickels JT Jr (2001) The effect of the erg26-1 mutation on the regulation of lipid metabolism in Saccharomyces cerevisiae. J Biol Chem 276:12702–12711CrossRefPubMedGoogle Scholar
  9. Beaudoin F, Michaelson LV, Hey SJ, Lewis MJ, Shewry PR, Sayanova O, Napier JA (2000) Heterologous reconstitution in yeast of the polyunsaturated fatty acid biosynthetic pathway. Proc Natl Acad Sci USA 97:6421–6426CrossRefPubMedGoogle Scholar
  10. Behalova B, Hozak P, Blahova M, Sillinger V (1992) Effect of nitrogen limitation and sporulation on sterol and lipid formation in Saccharomyces cerevisiae. Folia Microbiol (Praha) 37:442–449Google Scholar
  11. Bloch KE (1983) Sterol structure and membrane function. Crit Rev Biochem 14:47–92PubMedGoogle Scholar
  12. Broun P, Gettner S, Somerville C (1999) Genetic engineering of plant lipids. Annu Rev Nutr 19:197–216CrossRefPubMedGoogle Scholar
  13. Byskov AG, Andersen CY, Leonardsen L, Baltsen M (1999) Meiosis activating sterols (MAS) and fertility in mammals and man. J Exp Zool 285:237–242CrossRefPubMedGoogle Scholar
  14. Casey WM, Keesler GA, Parks LW (1992) Regulation of partitioned sterol biosynthesis in Saccharomyces cerevisiae. J Bacteriol 174:7283–7288PubMedGoogle Scholar
  15. Cauet G, Degryse E, Ledoux C, Spagnoli R, Achstetter T (1999) Pregnenolone esterification in Saccharomyces cerevisiae. A potential detoxification mechanism. Eur J Biochem 261:317–324CrossRefPubMedGoogle Scholar
  16. Ciesarová Z, Sajbidor J, Smogrovicova, D, Bafrncova P (1996) Effect of ethanol on fermentation and lipid composition in Saccharomyces cerevisiae. Food Biotechnol 10:1–12Google Scholar
  17. Covello PS, Reed DW (1996) Functional expression of the extraplastidial Arabidopsis thaliana oleate desaturase gene (FAD2) in Saccharomyces cerevisiae. Plant Physiol 111:223–226PubMedGoogle Scholar
  18. Daum G, Lees ND, Bard M, Dickson R (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14:1471–1510CrossRefPubMedGoogle Scholar
  19. Degryse E, Cauet G, Spagnoli R, Achstetter T (1999) Pregnenolone metabolized to 17alpha-hydroxyprogesterone in yeast: biochemical analysis of a metabolic pathway. J Steroid Biochem Mol Biol 71:239–246CrossRefPubMedGoogle Scholar
  20. Donald KA, Hampton RY, Fritz IB (1997) Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 63:3341–3344PubMedGoogle Scholar
  21. Duport C, Spagnoli R, Degryse E, Pompon D (1998) Self-sufficient biosynthesis of pregnenolone and progesterone in engineered yeast. Nat Biotechnol 16:186–189PubMedGoogle Scholar
  22. Duport C, Schoepp B, Chatelain E, Spagnoli R, Dumas B, Pompon D (2003) Critical role of the plasma membrane for expression of mammalian mitochondrial side chain cleavage activity in yeast. Eur J Biochem 270:1502–1514PubMedGoogle Scholar
  23. Dyer JM, Chapital DC, Kuan JW, Mullen RT, Pepperman AB (2002) Metabolic engineering of Saccharomyces cerevisiae for production of novel lipid compounds. Appl Microbiol Biotechnol 59:224–230CrossRefPubMedGoogle Scholar
  24. Fannon SA, Vidaver RM, Marts SA (2001) An abridged history of sex steroid hormone receptor action. J Appl Physiol 91:1854–1859PubMedGoogle Scholar
  25. Ford G, Ellis EM (2002) Characterization of Ypr1p from Saccharomyces cerevisiae as a 2-methylbutyraldehyde reductase. Yeast 19:1087–1096CrossRefPubMedGoogle Scholar
  26. Gao H, Tan TW (2001) Analysis of parameters for optimum of ergosterol fermentation. Sheng Wu Gong Cheng Xue Bao 17:693–697PubMedGoogle Scholar
  27. Gardner RG, Hampton RY (1999) A highly conserved signal controls degradation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in eukaryotes. J Biol Chem 274:31671–31678CrossRefPubMedGoogle Scholar
  28. Gibson RA, Makrides M (1998) The role of long chain polyunsaturated fatty acids (LCPUFA) in neonatal nutrition. Acta Paediatr 87:1017–1022CrossRefPubMedGoogle Scholar
  29. Gill I, Valivety R (1997) Polyunsaturated fatty acids, part 1: occurrence, biological activities and applications. Trends Biotechnol 15:401–409CrossRefPubMedGoogle Scholar
  30. Grabinska K, Palamarczyk G (2002) Dolichol biosynthesis in the yeast Saccharomyces cerevisiae: an insight into the regulatory role of farnesyl diphosphate synthase. FEMS Yeast Res 2:259–265CrossRefPubMedGoogle Scholar
  31. Grunler J, Ericsson J, Dallner G (1994) Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim Biophys Acta 1212:259–277PubMedGoogle Scholar
  32. Hampton RY (1998) Genetic analysis of hydroxymethylglutaryl-coenzyme A reductase regulated degradation. Curr Opin Lipidol 9:93–97CrossRefPubMedGoogle Scholar
  33. Hampton RY (2002) ER-associated degradation in protein quality control and cellular regulation. Curr Opin Cell Biol 14:476–482CrossRefPubMedGoogle Scholar
  34. Hampton RY, Dimster-Denk D, Rine J (1996) The biology of HMG-CoA reductase: the pros of contra-regulation. Trends Biochem Sci 21:140–145CrossRefPubMedGoogle Scholar
  35. Hastings N, Agaba M, Tocher DR, Leaver MJ, Dick JR, Sargent JR, Teale AJ (2001) A vertebrate fatty acid desaturase with Δ5 and Δ6 activities. Proc Natl Acad Sci USA 98:14304–14309CrossRefPubMedGoogle Scholar
  36. Heiderpriem RW, Livant PD, Parish EJ, Barbuch RJ, Broaddus MG, Bard M (1992) A simple method for the isolation of zymosterol from a sterol mutant of Saccharomyces cerevisiae. J Steroid Biochem Mol Biol 43:741–743CrossRefPubMedGoogle Scholar
  37. Holland HL (1999) Recent advances in applied and mechanistic aspects of the enzymatic hydroxylation of steroids by whole-cell biocatalysts. Steroids 64:178–186CrossRefPubMedGoogle Scholar
  38. Huang YS, Chaudhary S, Thurmond JM, Bobik EG Jr, Yuan L, Chan GM, Kirchner SJ, Mukerji P, Knutzon DS (1999) Cloning of Δ12- and Δ6-desaturases from Mortierella alpina and recombinant production of gamma-linolenic acid in Saccharomyces cerevisiae. Lipids 34:649–659PubMedGoogle Scholar
  39. Hur E, Wilson DK (2000) Crystallization and aldo-keto reductase activity of Gcy1p from Saccharomyces cerevisiae. Acta Crystallogr D Biol Crystallogr 56:763–765CrossRefPubMedGoogle Scholar
  40. Husselstein T, Gachotte D, Desprez T, Bard M, Benveniste P (1996) Transformation of Saccharomyces cerevisiae with a cDNA encoding a sterol C-methyltransferase from Arabidopsis thaliana results in the synthesis of 24-ethyl sterols. FEBS Lett 381:87–92CrossRefPubMedGoogle Scholar
  41. Innis SM, Sprecher H, Hachey D, Edmond J, Anderson RE (1999) Neonatal polyunsaturated fatty acid metabolism. Lipids 34:139–149PubMedGoogle Scholar
  42. Jackson BE, Hart-Wells EA, Matsuda SP (2003) Metabolic engineering to produce sesquiterpenes in yeast. Org Lett 5:1629–1632CrossRefPubMedGoogle Scholar
  43. Jang H, Lin YY, Yang SS (2000) Polyunsaturated fatty acid production with Mortierella alpina by solid substrate fermentation. Bot Bull Acad Sin 41:41–48Google Scholar
  44. Jensen-Pergakes K, Guo Z, Giattina M, Sturley SL, Bard M (2001) Transcriptional regulation of the two sterol esterification genes in the yeast Saccharomyces cerevisiae. J Bacteriol 183:4950–4957CrossRefPubMedGoogle Scholar
  45. Kajiwara S, Shirai A, Fujii T, Toguri T, Nakamura K, Ohtaguchi K (1996) Polyunsaturated fatty acid biosynthesis in Saccharomyces cerevisiae: expression of ethanol tolerance and the FAD2 gene from Arabidopsis thaliana. Appl Environ Microbiol 62:4309–4313PubMedGoogle Scholar
  46. Kalb VF, Loper JC, Dey CR, Woods CW, Sutter TR (1986) Isolation of a cytochrome P-450 structural gene from Saccharomyces cerevisiae. Gene 45:237–245CrossRefPubMedGoogle Scholar
  47. Kalb VF, Woods CW, Turi TG, Dey CR, Sutter TR, Loper JC (1987) Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae. DNA 6:529–537PubMedGoogle Scholar
  48. Lacour T, Achstetter T, Dumas B (1998) Characterization of recombinant adrenodoxin reductase homologue (Arh1p) from yeast. Implication in in vitro cytochrome p45011beta monooxygenase system. J Biol Chem 273:23984–23992CrossRefPubMedGoogle Scholar
  49. Lee PC, Schmidt-Dannert C (2002) Metabolic engineering towards biotechnological production of carotinoids in microorganisms. Appl Microbiol Biotechnol 60:1–11CrossRefPubMedGoogle Scholar
  50. Lees ND, Bard M, Kirsch DR (1999) Biochemistry and molecular biology of sterol synthesis in Saccharomyces cerevisiae. Crit Rev Biochem Mol Biol 34:33–47PubMedGoogle Scholar
  51. Leonard AE, Kelder B, Bobik EG, Chuang LT, Lewis CJ, Kopchick JJ, Mukerji P Huang YS (2002) Identification and expression of mammalian long-chain PUFA elongation enzymes. Lipids 37:733–740PubMedGoogle Scholar
  52. Manzella L, Barros MH, Nobrega FG (1998) ARH1 of Saccharomyces cerevisiae: a new essential gene that codes for a protein homologous to the human adrenodoxin reductase. Yeast 14:839–846CrossRefPubMedGoogle Scholar
  53. Maraz A (2002) From yeast genetics to biotechnology. Acta Microbiol Immunol Hung 49:483–491PubMedGoogle Scholar
  54. Martin CE, Oh CS, Kandasamy P, Chellapa R, Vemula M (2002) Yeast desaturases. Biochem Soc Trans 30:1080–1082PubMedGoogle Scholar
  55. Meganathan R (2001) Ubiquinone biosynthesis in microorganisms. FEMS Microbiol Lett 203:131–139CrossRefPubMedGoogle Scholar
  56. Migliaccio A, Castoria G, Di Domenico M, Falco A de, Bilancio A, Lombardi M, Bottero D, Varricchio L, Nanayakkara M, Rotondi A, Auricchio F (2002) Sex steroid hormones act as growth factors. J Steroid Biochem Mol Biol 83:31–35CrossRefPubMedGoogle Scholar
  57. Miller WL (1995) Mitochondrial specificity of the early steps in steroidogenesis. J Steroid Biochem Mol Biol 55:607–616CrossRefPubMedGoogle Scholar
  58. Misawa N, Shimada H (1997) Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J Biotechnol 59:169–181CrossRefPubMedGoogle Scholar
  59. Morohashi K, Fujii-Kuriyama Y, Okada Y, Sogawa K, Hirose T, Inayama S, Omura T (1984) Molecular cloning and nucleotide sequence of cDNA for mRNA of mitochondrial cytochrome P-450 (SCC) of bovine adrenal cortex. Proc Natl Acad Sci USA 81:4647–4651PubMedGoogle Scholar
  60. Nagasawa N, Bogaki T, Iwamatsu A, Hamachi M, Kumagai C (1998) Cloning and nucleotide sequence of the alcohol acetyltransferase II gene (ATF2) from Saccharomyces cerevisiae Kyokai No. 7. Biosci Biotechnol Biochem 62:1852–1857PubMedGoogle Scholar
  61. Nes WD, McCourt BS, Marshall JA, Ma J, Dennis AL, Lopez M, Li H, He L (1999) Site-directed mutagenesis of the sterol methyl transferase active site from Saccharomyces cerevisiae results in formation of novel 24-ethyl sterols. J Org Chem 64:1535–1542CrossRefPubMedGoogle Scholar
  62. Novotny C, Beran K, Behalova B, Dolezalova L, Zajicek J (1987) Effect of ammonium ions on Δ5,7-sterol synthesis in Saccharomyces cerevisiae. Folia Microbiol (Praha) 32:206–210Google Scholar
  63. Obeid LM, Okamoto Y, Mao C (2002) Yeast sphingolipids: metabolism and biology. Biochim Biophys Acta 1585:163–171CrossRefPubMedGoogle Scholar
  64. Oh CS, Toke DA, Mandala S, Martin CE (1997) ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem 272:17376–17384CrossRefPubMedGoogle Scholar
  65. Park WS, Murphy PA, Glatz BA (1990) Lipid metabolism and cell composition of the oleaginous yeast Apiotrichum curvatum grown at different carbon to nitrogen ratios. Can J Microbiol 36:318–326PubMedGoogle Scholar
  66. Parker-Barnes JM, Das T, Bobik E, Leonard AE, Thurmond JM, Chaung LT, Huang YS, Mukerji P (2000) Identification and characterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acids. Proc Natl Acad Sci USA. 97:8284–8289Google Scholar
  67. Parks LW, Casey WM (1995) Physiological implications of sterol biosynthesis in yeast. Annu Rev Microbiol 49:95–116CrossRefPubMedGoogle Scholar
  68. Parks LW, Smith SJ, Crowley JH (1995) Biochemical and physiological effects of sterol alterations in yeast—a review. Lipids 30:227–230PubMedGoogle Scholar
  69. Peyou-Ndi MM, Watts JL, Browse J (2000) Identification and characterization of an animal delta(12) fatty acid desaturase gene by heterologous expression in Saccharomyces cerevisiae. Arch Biochem Biophys 376:399–408CrossRefPubMedGoogle Scholar
  70. Pirtle IL, Kongcharoensuntorn W, Nampaisansuk M, Knesek JE, Chapman KD, Pirtle RM (2001) Molecular cloning and functional expression of the gene for a cotton Δ12 fatty acid desaturase (FAD2). Biochim Biophys Acta 1522:122–129CrossRefPubMedGoogle Scholar
  71. Polakowski T, Stahl U, Lang C (1998) Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl Microbiol Biotechnol 49:66–71CrossRefPubMedGoogle Scholar
  72. Polakowski T, Bastl R, Stahl U, Lang C (1999) Enhanced sterol-acyl transferase activity promotes sterol accumulation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53:30–35CrossRefPubMedGoogle Scholar
  73. Qiu X, Hong H, MacKenzie SL (2001) Identification of a delta 4 fatty acid desaturase from Thraustochytrium sp. involved in the biosynthesis of docosahexanoic acid by heterologous expression in Saccharomyces cerevisiae and Brassica juncea. J Biol Chem 276:31561–31566CrossRefPubMedGoogle Scholar
  74. Riad M, Mogos M, Thangathurai D, Lumb PD (2002) Steroids. Curr Opin Crit Care 8:281–284CrossRefPubMedGoogle Scholar
  75. Rogers B, Decottignies A, Kolaczkowski M, Carvajal E, Balzi E, Goffeau A (2001) The pleiotropic drug ABC transporters from Saccharomyces cerevisiae. J Mol Microbiol Biotechnol 3:207–214Google Scholar
  76. Saito T, Ochiai H (1999) Identification of Delta5-fatty acid desaturase from the cellular slime mold Dictyostelium discoideum. Eur J Biochem 265:809–814CrossRefPubMedGoogle Scholar
  77. Saito T, Morio T, Ochiai H (2000) A second functional delta5 fatty acid desaturase in the cellular slime mould Dictyostelium discoideum. Eur J Biochem 267:1813–1818CrossRefPubMedGoogle Scholar
  78. Sakaki T, Kominami S, Hayashi K, Akiyoshi-Shibata M, Yabusaki Y (1996) Molecular engineering study on electron transfer from NADPH-P450 reductase to rat mitochondrial P450c27 in yeast microsomes. J Biol Chem 271:26209–26213CrossRefPubMedGoogle Scholar
  79. Sakuradani E, Kobayashi M, Ashikari T, Shimizu S (1999) Identification of Δ12-fatty acid desaturase from arachidonic acid-producing Mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. Eur J Biochem 261:812–820CrossRefPubMedGoogle Scholar
  80. Schenk P, Ausborn M, Bendas F, Nuhn P, Arndt D, Meyer HW (1989) The preparation and characterization of lipid vesicles containing esters of sucrose and fatty acids. J Microencapsul 6:95–103PubMedGoogle Scholar
  81. Sjostrom B, Bergenstahl B, Kronberg B (1993) A method for the preparation of submicron particles of sparingly water-soluble drugs by precipitation in oil-in-water emulsions. II: Influence of the emulsifier, the solvent, and the drug substance. J Pharm Sci 82:584–589PubMedGoogle Scholar
  82. Smith SJ, Crowley JH, Parks LW (1996) Transcriptional regulation by ergosterol in the yeast Saccharomyces cerevisiae. Mol Cell Biol 16:5427–5432PubMedGoogle Scholar
  83. Sorger D, Daum G (2003) Triacylglycerol biosynthesis in yeast. Appl Microbiol Biotechnol 61:289–299PubMedGoogle Scholar
  84. Sprecher H (2000) Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim Biophys Acta 1486:219–231CrossRefPubMedGoogle Scholar
  85. Stach D, Zheng YF, Perez AL, Oehlschlager AC, Abe I, Prestwich GD, Hartman PG (1997) Synthesis and inhibition studies of sulfur-substituted squalene oxide analogues as mechanism-based inhibitors of 2,3-oxidosqualene-lanosterol cyclase. J Med Chem 40:201–209CrossRefPubMedGoogle Scholar
  86. Sturley SL (2000) Conservation of eukaryotic sterol homeostasis: new insights from studies in budding yeast. Biochim Biophys Acta 1529:155–163PubMedGoogle Scholar
  87. Subbiah MT, Abplanalp W (2003) Ergosterol (major sterol of baker′s and brewer′s yeast extracts) inhibits the growth of human breast cancer cells in vitro and the potential role of its oxidation products. Int J Vitam Nutr Res 73:19–23PubMedGoogle Scholar
  88. Suga K, Honjoh K, Furuya N, Shimizu H, Nishi K, Shinohara F, Hirabaru Y, Maruyama I, Miyamoto T, Hatano S, Iio M (2002) Two low-temperature-inducible Chlorella genes for delta12 and omega-3 fatty acid desaturase (FAD): isolation of delta12 and omega-3 fad cDNA clones, expression of delta12 fad in Saccharomyces cerevisiae, and expression of omega-3 fad in Nicotiana tabacum. Biosci Biotechnol Biochem 66:1314–1327CrossRefPubMedGoogle Scholar
  89. Swain E, Baudry K, Stukey J, McDonough V, Germann M, Nickels JT Jr (2002) Sterol-dependent regulation of sphingolipid metabolism in Saccharomyces cerevisiae. J Biol Chem 277:26177–26184CrossRefPubMedGoogle Scholar
  90. Szczebara FM, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C, Blanchard S, Groisillier A, Testet E, Costaglioli P, Cauet G, Degryse E, Balbuena D, Winter J, Achstetter T, Spagnoli R, Pompon D, Dumas B (2003) Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 21:143–149CrossRefPubMedGoogle Scholar
  91. Thompson BT (2003) Glucocorticoids and acute lung injury. Crit Care Med 31:253–257Google Scholar
  92. Thorsness M, Schafer W, D′Ari L, Rine J (1989) Positive and negative transcriptional control by heme of genes encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase in Saccharomyces cerevisiae. Mol Cell Biol 9:5702–5712PubMedGoogle Scholar
  93. Tijet N, Helvig C, Pinot F, Le Bouquin R, Lesot A, Durst F, Salaun JP, Benveniste I (1998) Functional expression in yeast and characterization of a clofibrate-inducible plant cytochrome P-450 (CYP94A1) involved in cutin monomers synthesis. Biochem J 332:583–589PubMedGoogle Scholar
  94. Valachovic M, Klobucnikova V, Griac P, Hapala I (2002) Heme-regulated expression of two yeast acyl-CoA:sterol acyltransferases is involved in the specific response of sterol esterification to anaerobiosis. FEMS Microbiol Lett 206:121–125CrossRefPubMedGoogle Scholar
  95. Vandamme EJ (1992) Production of vitamins, coenzymes and related biochemicals by biotechnological processes. J Chem Technol Biotechnol 53:313–327PubMedGoogle Scholar
  96. Veen M, Stahl U, Lang C (2003) Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. FEMS Yeast Res 4:87–95Google Scholar
  97. Vinson GP, Teja R, Ho MM, Puddefoot JR (1995) A two cell type theory for aldosterone biosynthesis: the roles of 11 beta-hydroxylase and aldosterone synthase, and a high capacity tightly binding steroid carrier for 18-hydroxydeoxycorticosterone in rat adrenals. J Endocrinol 144:359–368PubMedGoogle Scholar
  98. Volkman JK (2003) Sterols in microorganisms. Appl Microbiol Biotechnol 60:495–506PubMedGoogle Scholar
  99. Von Schacky C, Dyerberg J (2001) Omega 3 fatty acids. From eskimos to clinical cardiology—what took us so long? World Rev Nutr Diet 88:90–99PubMedGoogle Scholar
  100. Watkins BA, Li Y, Seifert MF (2001) Nutraceutical fatty acids as biochemical and molecular modulators of skeletal biology. J Am Coll Nutr 20:417–420Google Scholar
  101. Watts JL, Browse J (1999) Isolation and characterization of a Delta 5-fatty acid desaturase from Caenorhabditis elegans. Arch Biochem Biophys 362:175–182CrossRefPubMedGoogle Scholar
  102. Weber JM, Reiser J, Kappeli O (1990) Lanosterol 14 alpha-demethylase-encoding gene: systematic analysis of homologous overexpression in Saccharomyces cerevisiae using strong yeast promoters. Gene 87:167–175CrossRefPubMedGoogle Scholar
  103. Weber JM, Ponti CG, Kappeli O, Reiser J (1992) Factors affecting homologous overexpression of the Saccharomyces cerevisiae lanosterol 14 alpha-demethylase gene. Yeast 8:519–533PubMedGoogle Scholar
  104. Woodward RB, Sondhermer F, Taule D, Hensler K, McLamore WH (1952) The total synthesis of steroids. J Am Chem Soc 74:4223Google Scholar
  105. Xu R, Wilson WK, Matsuda SP (2002) Production of meiosis-activating sterols from metabolically engineered yeast. J Am Chem Soc 124:918–919CrossRefPubMedGoogle Scholar
  106. Yang H, Bard M, Bruner DA, Gleeson A, Deckelbaum RJ, Aljinovic G, Pohl TM, Rothstein R, Sturley SL (1996) Sterol esterification in yeast: a two-gene process Science 272:1353–1356Google Scholar
  107. Zank TK, Zahringer U, Lerchl J, Heinz E (2000) Cloning and functional expression of the first plant fatty acid elongase specific for delta(6)-polyunsaturated fatty acids. Biochem Soc Trans 28:654–658PubMedGoogle Scholar
  108. Zhang B, He X, Tie C, Liu Y (1999) Construction of high ergosterol-producing yeast strains and study on the optimal conditions for culture. Chin J Biotechnol 15:43–49PubMedGoogle Scholar
  109. Zuber MX, Mason JI, Simpson ER, Waterman MR (1988) Simultaneous transfection of COS-1 cells with mitochondrial and microsomal steroid hydroxylases: incorporation of a steroidogenic pathway into nonsteroidogenic cells. Proc Natl Acad Sci USA 85:699–703PubMedGoogle Scholar
  110. Zweytick D, Leitner E, Kohlwein SD, Yu C, Rothblatt J, Daum G (2000) Contribution of Are1p and Are2p to steryl ester synthesis in the yeast Saccharomyces cerevisiae. Eur J Biochem 267:1075–1082CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Institut für Biotechnologie, FG Mikrobiologie und GenetikTechnische Universität BerlinBerlinGermany
  2. 2.Organobalance GmbHBerlinGermany

Personalised recommendations