Applied Microbiology and Biotechnology

, Volume 63, Issue 5, pp 495–509

Metabolic engineering for improved fermentation of pentoses by yeasts

Mini-Review

Abstract

The fermentation of xylose is essential for the bioconversion of lignocellulose to fuels and chemicals, but wild-type strains of Saccharomyces cerevisiae do not metabolize xylose, so researchers have engineered xylose metabolism in this yeast. Glucose transporters mediate xylose uptake, but no transporter specific for xylose has yet been identified. Over-expressing genes for aldose (xylose) reductase, xylitol dehydrogenase and moderate levels of xylulokinase enable xylose assimilation and fermentation, but a balanced supply of NAD(P) and NAD(P)H must be maintained to avoid xylitol production. Reducing production of NADPH by blocking the oxidative pentose phosphate cycle can reduce xylitol formation, but this occurs at the expense of xylose assimilation. Respiration is critical for growth on xylose by both native xylose-fermenting yeasts and recombinant S, cerevisiae. Anaerobic growth by recombinant mutants has been reported. Reducing the respiration capacity of xylose-metabolizing yeasts increases ethanol production. Recently, two routes for arabinose metabolism have been engineered in S. cerevisiae and adapted strains of Pichia stipitis have been shown to ferment hydrolysates with ethanol yields of 0.45 g g−1 sugar consumed, so commercialization seems feasible for some applications.

References

  1. Abbi M, Kuhad RC, Singh A (1996) Fermentation of xylose and rice straw hydrolysate to ethanol by Candida shehatae NCL-3501. J Ind Microbiol 17:20–23PubMedGoogle Scholar
  2. Aguilar R, Ramirez JA, Garrote G, Vazquez M (2002) Kinetic study of the acid hydrolysis of sugar cane bagasse. J Food Eng 55:309–318CrossRefGoogle Scholar
  3. Amore R, Kötter P, Kuster C, Ciriacy M, Hollenberg CP (1991) Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis. Gene 109:89–97PubMedGoogle Scholar
  4. Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198PubMedGoogle Scholar
  5. Bao X, Gao D, Qu Y, Wang Z, Walfridssion M, Hahn-Hägerdal B (1997) Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes. Chin J Biotechnol 13:225–231PubMedGoogle Scholar
  6. Basaran P, Basaran N, Hang YD (2000) Isolation and characterization of Pichia stipitis mutants with enhanced xylanase activity. World J Microbiol Biotechnol 16:545–550CrossRefGoogle Scholar
  7. Becker J, Boles E (2003) A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol. Appl Environ Microbiol 69:4144–4150Google Scholar
  8. Billard P, Menart S, Fleer R, Bolotin-Fukuhara M (1995) Isolation and characterization of the gene encoding xylose reductase from Kluyveromyces lactis. Gene 162:93–97CrossRefPubMedGoogle Scholar
  9. Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85–111CrossRefPubMedGoogle Scholar
  10. Bruinenberg PM (1986) The NADP(H) redox couple in yeast metabolism. Antonie Van Leeuwenhoek 52:411–429PubMedGoogle Scholar
  11. Bruinenberg PM, Debot PHM, Dijken JP van, Scheffers WA (1983a) The role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur J Appl Microbiol Biotechnol 18:287–292Google Scholar
  12. Bruinenberg PM, Dijken JP van, Scheffers WA (1983b) A theoretical analysis of NADPH production and consumption in yeasts. J Gen Microbiol 129:953–964Google Scholar
  13. Bruinenberg PM, Debot PHM, Dijken JP van, Scheffers WA (1984) NADH-linked aldose reductase—the key to anaerobic alcoholic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 19:256–260Google Scholar
  14. Bruinenberg PM, Jonker R, Dijken JP van, Scheffers WA (1985) Utilization of formate as an additional energy source by glucose-limited chemostat cultures of Candida utilis CBS-621 and Saccharomyces cerevisiae CBS-8066—evidence for the absence of transhydrogenase activity in yeasts. Arch Microbiol 142:302–306Google Scholar
  15. Buziol S, et al (2002) Determination of in vivo kinetics of the starvation-induced Hxt5 glucose transporter of Saccharomyces cerevisiae. FEMS Yeast Res 2:283–291CrossRefPubMedGoogle Scholar
  16. Chang SF, Ho NW (1988) Cloning the yeast xylulokinase gene for the improvement of xylose fermentation. Appl Biochem Biotechnol 17:313–318PubMedGoogle Scholar
  17. Chang YD, Dickson RC (1988) Primary structure of the lactose permease gene from the yeast Kluyveromyces lactis—presence of an unusual transcript structure. J Biol Chem 263:16696–16703PubMedGoogle Scholar
  18. Chen RF, Wu ZW, Lee YY (1998) Shrinking-bed model for percolation process applied to dilute-acid pretreatment hydrolysis of cellulosic biomass. Appl Biochem Biotechnol 70/72:37–49Google Scholar
  19. Cho JY, Jeffries TW (1998) Pichia stipitis genes for alcohol dehydrogenase with fermentative and respiratory functions. Appl Environ Microbiol 64:1350–1358PubMedGoogle Scholar
  20. Cho JY, Jeffries TW (1999) Transcriptional control of ADH genes in the xylose-fermenting yeast Pichia stipitis. Appl Environ Microbiol 65:2363–2368PubMedGoogle Scholar
  21. Christensen B, Gombert AK, Nielsen J (2002) Analysis of flux estimates based on (13)C-labelling experiments. Eur J Biochem 269:2795–2800CrossRefPubMedGoogle Scholar
  22. Claassen PAM, et al (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755Google Scholar
  23. Dahn KM, Davis BP, Pittman PE, Kenealy WR, Jeffries TW (1996) Increased xylose reductase activity in the xylose-fermenting yeast Pichia stipitis by overexpression of XYL1. Appl Biochem Biotechnol 57/58:267–276Google Scholar
  24. Den Haan R, van Zyl WH (2001) Differential expression of the Trichoderma reesei beta-xylanase II (xyn2) gene in the xylose-fermenting yeast Pichia stipitis. Appl Microbiol Biotechnol 57:521–527CrossRefPubMedGoogle Scholar
  25. Deng XX, Ho NW (1990) Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Appl Biochem Biotechnol 24/25:193–199Google Scholar
  26. Dequin S (2001) The potential of genetic engineering for improving brewing, wine making and baking yeasts. Appl Microbiol Biotechnol 56:577–588CrossRefPubMedGoogle Scholar
  27. Diderich JA, Schuurmans JM, Van Gaalen MC, Kruckeberg AL, Van Dam K (2001) Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae. Yeast 18:1515–1524CrossRefPubMedGoogle Scholar
  28. Dien BS, Kurtzman CP, Saha BC, Bothast RJ (1996) Screening for l-arabinose fermenting yeasts. Appl Biochem Biotechnol 57/58:233–242Google Scholar
  29. Does AL, Bisson LF (1989) Characterization of xylose uptake in the yeasts Pichia heedii and Pichia stipitis. Appl Environ Microbiol 55:159–164Google Scholar
  30. Du Preez JC, Walt JP van der (1983) Fermentation of d-xylose to ethanol by a strain of Candida shehatae. Biotechnol Lett 5:357–362Google Scholar
  31. Du Preez JC, Prior BA, Monteiro AMT (1984) The effect of aeration on xylose fermentation by Candida shehatae and Pachysolen tannophilus—a comparative study. Appl Microbiol Biotechnol 19:261–266Google Scholar
  32. Du Preez JC, Bosch M, Prior BA (1986) Xylose fermentation by Candida shehatae and Pichia stipitis—effects of pH, temperature and substrate concentration. Enzyme Microb Technol 8:360–364CrossRefGoogle Scholar
  33. Eliasson A, et al (2000a) Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53:376–382PubMedGoogle Scholar
  34. Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000b) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386PubMedGoogle Scholar
  35. Fiaux J, Cakar ZP, Sonderegger M, Wuthrich K, Szyperski T, Sauer U (2003) Metabolic flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell 2:170–180CrossRefPubMedGoogle Scholar
  36. Flores CL, Rodriguez C, Petit T, Gancedo C (2000) Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol Rev 24:507–529Google Scholar
  37. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628CrossRefPubMedGoogle Scholar
  38. Gong CS, Cao NJ, Du J, Tsao GT (1999) Ethanol production from renewable resources. Adv Biochem Eng Biotechnol 65:207–241PubMedGoogle Scholar
  39. Gupthar AS (1992) Segregation of altered parental properties in fusions between Saccharomyces cerevisiae and the d-xylose fermenting yeasts Candida shehatae and Pichia stipitis. Can J Microbiol 38:1233–1237PubMedGoogle Scholar
  40. Hahn-Hägerdal B, Wahlbom CF, Gardonyi M, Zyl WH van, Cordero Otero RR, Jönsson LJ (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng Biotechnol 73:53–84PubMedGoogle Scholar
  41. Hallborn J, et al (1991) Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology 9:1090–1095PubMedGoogle Scholar
  42. Hallborn J, Gorwa MF, Meinander N, Penttilä M, Keranen S, Hahn-Hägerdal B (1994) The influence of cosubstrate and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing the XYL1 gene. Appl Microbiol Biotechnol 42:326–333PubMedGoogle Scholar
  43. Hallborn J, Walfridsson M, Penttilä M, Keranen S, Hahn-Hägerdal B (1995) A short-chain dehydrogenase gene from Pichia stipitis having d-arabinitol dehydrogenase activity. Yeast 11:839–847PubMedGoogle Scholar
  44. Hamacher T, Becker J, Gardonyi M, Hahn-Hägerdal B, Boles E (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148:2783–2788PubMedGoogle Scholar
  45. Handumrongkul C, Ma DP, Silva JL (1998) Cloning and expression of Candida guilliermondii xylose reductase gene (xyl1) in Pichia pastoris. Appl Microbiol Biotechnol 49:399–404CrossRefPubMedGoogle Scholar
  46. Harhangi HR, et al (2003) Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch Microbiol 180:134–141PubMedGoogle Scholar
  47. Hespell RB (1998) Extraction and characterization of hemicellulose from the corn fiber produced by corn wet-milling processes. J Agric Food Chem 46:2615–2619CrossRefGoogle Scholar
  48. Hinmann ND, Wright JD, Hoagland W, Wyman CE (1989) Xylose fermentation—an economic analysis. Appl Biochem Biotechnol 20/21:391–401Google Scholar
  49. Ho NW, Tsao GT (1993) Recombinant yeasts for effective fermentation of glucose and xylose. US Patent 5789210Google Scholar
  50. Ho NW, Lin FP, Huang S, Andrews PC, Tsao GT (1990) Purification, characterization, and amino terminal sequence of xylose reductase from Candida shehatae. Enzyme Microb Technol 12:33–39CrossRefPubMedGoogle Scholar
  51. Ho NW, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective co-fermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859PubMedGoogle Scholar
  52. Ho NW, Chen Z, Brainard AP, Sedlak M (1999) Successful design and development of genetically engineered Saccharomyces yeasts for effective co-fermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv Biochem Eng Biotechnol 65:163–192Google Scholar
  53. Hohmann S, Neves MJ, Koning W de, Alijo R, Ramos J, Thevelein JM (1993) The growth and signalling defects of the ggs1 (fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII. Curr Genet 23:281–289PubMedGoogle Scholar
  54. Hohmann S, Bell W, Neves MJ, Valckx D, Thevelein JM (1996) Evidence for trehalose-6-phosphate-dependent and -independent mechanisms in the control of sugar influx into yeast glycolysis. Mol Microbiol 20:981–991PubMedGoogle Scholar
  55. Jeffries T (1981) Conversion of xylose to ethanol under aerobic conditions. Biotechnol Lett 3:213–218Google Scholar
  56. Jeffries TW (1982) A comparison of Candida tropicalis and Pachysolen tannophilus for conversion of xylose to ethanol. Biotechnol Bioeng Symp 12:103–110Google Scholar
  57. Jeffries T (1983) Utilization of xylose by bacteria yeasts and fungi. Adv Biochem Eng Biotechnol 27:1–32PubMedGoogle Scholar
  58. Jeffries TW (1985) Emerging technology for fermenting d-xylose. Trends Biotechnol 3:208–212Google Scholar
  59. Jeffries TW, Jin YS (2000) Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol 2000:221–268Google Scholar
  60. Jeffries TW, Kurtzman CP (1994) Strain selection, taxonomy, and genetics of xylose fermenting yeasts. Enzyme Microb Technol 16:922–932Google Scholar
  61. Jeffries TW, Shi NQ (1999) Genetic engineering for improved xylose fermentation by yeasts. Adv Biochem Eng Biotechnol 65:117–161PubMedGoogle Scholar
  62. Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68:1604–1609PubMedGoogle Scholar
  63. Jin YS (2002) Metabolic engineering of xylose fermentation in Saccharomyces cerevisiae. PhD thesis, University of Wisconsin, MadisonGoogle Scholar
  64. Jin YS, Jeffries TW (2003) Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol 105/108:277–285Google Scholar
  65. Jin YS, Jones S, Shi NQ, Jeffries TW (2002) Molecular cloning of XYL3 (d-xylulokinase) from Pichia stipitis and characterization of its physiological function. Appl Environ Microbiol 68:1232–1239CrossRefPubMedGoogle Scholar
  66. Jin YS, Ni H, Laplaza JM, Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity. Appl Environ Microbiol 69:495–503CrossRefPubMedGoogle Scholar
  67. Johansson B, Christensson C, Hobley T, Hahn-Hägerdal B (2001) Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol 67:4249–4255CrossRefPubMedGoogle Scholar
  68. Jönsson LJ, Palmqvist E, Nilvebrant NO, Hahn-Hägerdal B (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49:691–697CrossRefGoogle Scholar
  69. Kastner JR, Jones WJ, Roberts RS (1998) Simultaneous utilization of glucose and d-xylose by Candida shehatae in a chemostat. J Ind Microbiol Biotechnol 20:339–343CrossRefGoogle Scholar
  70. Kastner JR, Jones WJ, Roberts RS (1999) Oxygen starvation induces cell death in Candida shehatae fermentations of d-xylose, but not d-glucose. Appl Microbiol Biotechnol 51:780–785CrossRefPubMedGoogle Scholar
  71. Kheshgi HS, Prince RC, Marland G (2000) The potential of biomass fuels in the context of global climate change: focus on transportation fuels. Annu Rev Energy Environ 25:199–244CrossRefGoogle Scholar
  72. Kilian SG, Uden N van (1988) Transport of xylose and glucose in the xylose-fermenting yeast Pichia stipitis. Appl Microbiol Biotechnol 27:545–548Google Scholar
  73. Kim KH, Tucker MP, Keller FA, Aden A, Nguyen QA (2001) Continuous countercurrent extraction of hemicellulose from pretreated wood residues. Appl Biochem Biotechnol 91/93:253–267Google Scholar
  74. Kim YS, Kim SY, Kim JH, Kim SC (1999) Xylitol production using recombinant Saccharomyces cerevisiae containing multiple xylose reductase genes at chromosomal delta-sequences. J Biotechnol 67:159–171PubMedGoogle Scholar
  75. Kordowska-Wiater M, Targonski Z (2001) Application of Saccharomyces cerevisiae and Pichia stipitis karyoductants to the production of ethanol from xylose. Acta Microbiol Pol 50:291–299PubMedGoogle Scholar
  76. Kötter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783Google Scholar
  77. Kötter P, Amore R, Hollenberg CP, Ciriacy M (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18:493–500PubMedGoogle Scholar
  78. Kou SC, Christensen MS, Cirillo VP (1970) Galactose transport in Saccharomyces cerevisiae. II. Characteristics of galactose uptake and exchange in galactokinaseless cells. J Bacteriol 103:671–678PubMedGoogle Scholar
  79. Krishnan MS, Ho NWY, Tsao GT (1999) Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400 (pLNH33). Appl Biochem Biotechnol 77/79:373–388Google Scholar
  80. Kruckeberg AL (1996) The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166:283–292PubMedGoogle Scholar
  81. Kuyper M, et al (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res (in press)Google Scholar
  82. La Grange DC, Pretorius IS, Claeyssens M, Zyl WH van (2001) Degradation of xylan to d-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger beta-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes. Appl Environ Microbiol 67:5512–5519CrossRefPubMedGoogle Scholar
  83. Lagunas R (1993) Sugar transport in Saccharomyces cerevisiae. FEMS Microbiol Rev 104:229–242CrossRefGoogle Scholar
  84. Larsson S, Cassland P, Jönsson LJ (2001) Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 67:1163–1170PubMedGoogle Scholar
  85. Lawford HG, Rousseau JD (1993) Production of ethanol from pulp-mill hardwood and softwood spent sulfite liquors by genetically engineered Escherichia coli. Appl Biochem Biotechnol 39:667–685Google Scholar
  86. Lee H, Biely P, Latta RK, Barbosa MFS, Schneider H (1986) Utilization of xylan by yeasts and Its conversion to ethanol by Pichia stipitis strains. Appl Environ Microbiol 52:320–324Google Scholar
  87. Lee WJ, Kim MD, Ryu YW, Bisson LF, Seo JH (2002) Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 60:186–191CrossRefPubMedGoogle Scholar
  88. Ligthelm ME, Prior BA, Du Preez JC (1988) The induction of d-xylose catabolizing enzymes in Pachysolen tannophilus and the relationship to anaerobic d-xylose fermentation. Biotechnol Lett 10:207–212Google Scholar
  89. Lönn A, Gardonyi M, Zyl W van, Hahn-Hägerdal B, Otero RC (2002) Cold adaptation of xylose isomerase from Thermus thermophilus through random PCR mutagenesis. Gene cloning and protein characterization. Eur J Biochem 269:157–163CrossRefPubMedGoogle Scholar
  90. Lucas C, Uden N van (1986) Transport of hemicellulose monomers in the xylose-fermenting yeast Candida shehatae. Appl Microbiol Biotechnol 23:491–495Google Scholar
  91. Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Environ 21:403–465CrossRefGoogle Scholar
  92. Maier A, Volker B, Boles E, Fuhrmann GF (2002) Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res 2:539–550CrossRefGoogle Scholar
  93. Maleszka R, Schneider H (1982) Fermentation of d-xylose, xylitol, and d-xylulose by yeasts. Can J Microbiol 28:360–363PubMedGoogle Scholar
  94. Maleszka R, Schneider H (1984) Involvement of oxygen and mitochondrial function in the metabolism of d-xylulose by Saccharomyces cerevisiae. Arch Biochem Biophys 228. 228:22–30Google Scholar
  95. McMillan JD (1997) Bioethanol production: status and prospects. Renewable Energy 10:295–302CrossRefGoogle Scholar
  96. Meinander NQ, Hahn-Hägerdal B (1997) Influence of cosubstrate concentration on xylose conversion by recombinant, XYL1-expressing Saccharomyces cerevisiae: a comparison of different sugars and ethanol as cosubstrates. Appl Environ Microbiol 63:1959–1964PubMedGoogle Scholar
  97. Meinander NQ, Boels I, Hahn-Hägerdal B (1999) Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1. Bioresour Technol 68:79–87CrossRefGoogle Scholar
  98. Metzger MH, Hollenberg CP (1994) Isolation and characterization of the Pichia stipitis transketolase gene and expression in a xylose-utilising Saccharomyces cerevisiae transformant. Appl Microbiol Biotechnol 42:319–325Google Scholar
  99. Michal G (1999) Biochemical pathways. Wiley, New YorkGoogle Scholar
  100. Moniruzzaman M, et al (1997) Fermentation of corn fibre sugars by an engineered xylose utilizing Saccharomyces yeast strain. World J Microbiol Biotechnol 13:341–346Google Scholar
  101. Morosoli R, Zalce E, Durand S (1993) Secretion of a Cryptococcus albidus xylanase in Pichia stipitis resulting in a xylan fermenting transformant. Curr Genet 24:94–99Google Scholar
  102. Nigam JN (2001a) Development of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate. J Appl Microbiol 90:208–215CrossRefPubMedGoogle Scholar
  103. Nigam JN (2001b) Ethanol production from hardwood spent sulfite liquor using an adapted strain of Pichia stipitis. J Ind Microbiol Biotechnol 26:145–150CrossRefPubMedGoogle Scholar
  104. Nissen TL, Schulze U, Nielsen J, Villadsen J (1997) Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143:203–218PubMedGoogle Scholar
  105. Olsson L, Hahn-Hägerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–331Google Scholar
  106. Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64:34–50PubMedGoogle Scholar
  107. Ozcan S, Kötter P, Ciriacy M (1991) Xylan-hydrolyzing enzymes of the yeast Pichia stipitis. Appl Microbiol Biotechnol 36:190–195Google Scholar
  108. Park NH, Yoshida S, Takakashi A, Kawabata Y, Sun HJ, Kusakabe I (2001) A new method for the preparation of crystalline l-arabinose from arabinoxylan by enzymatic hydrolysis and selective fermentation with yeast. Biotechnol Lett 23:411–416CrossRefGoogle Scholar
  109. Passoth V, Cohn M, Schafer B, Hahn-Hagerdal B, Klinner U (2003) Analysis of the hypoxia-induced ADH2 promoter of the respiratory yeast Pichia stipitis reveals a new mechanism for sensing of oxygen limitation in yeast. Yeast 20:39–51CrossRefPubMedGoogle Scholar
  110. Pettersen RC (1984) The chemical composition of wood. Adv Chem Ser 1984:57–126Google Scholar
  111. Prior BA, Kilian SG, Dupreez JC (1989) Fermentation of d-xylose by the yeasts Candida shehatae and Pichia stipitis—prospects and problems. Process Biochem 24:21–32Google Scholar
  112. Rees DA (1977) Polysaccharide shapes. Wiley, New YorkGoogle Scholar
  113. Richard P, Toivari MH, Penttilä M (2000) The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism. FEMS Microbiol Lett 190:39–43CrossRefPubMedGoogle Scholar
  114. Richard P, Londesborough J, Putkonen M, Kalkkinen N, Penttilä M (2001) Cloning and expression of a fungal l-arabinitol 4-dehydrogenase gene. J Biol Chem 276:40631–40637CrossRefPubMedGoogle Scholar
  115. Richard P, Putkonen M, Väänänen R, Londesborough J, Penttilä M (2002) The missing link in the fungal l-arabinose catabolic pathway, identification of the l-xylulose reductase gene. Biochemistry 41:6432–6437CrossRefPubMedGoogle Scholar
  116. Richard P, Verho R, Putkonen M, Londesborough J, Penttilä M (2003) Production of ethanol from l-arabinose by Saccharomyces cerevisiae containing a fungal l-arabinose pathway. FEMS Yeast Res (in press)Google Scholar
  117. Rizzi M, Erlemann P, Buithanh NA, Dellweg H (1988) Xylose fermentation by yeasts 4. Purification and kinetic studies of xylose reductase from Pichia stipitis. Appl Microbiol Biotechnol 29:148–154Google Scholar
  118. Roca C, Olsson L (2003) Increasing ethanol productivity during xylose fermentation by cell recycling of recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 60:560–563PubMedGoogle Scholar
  119. Rodrigues DC, Da Silva SS, Almeida ESJB, Vitolo M (2002) Xylose reductase activity of Candida guilliermondii during xylitol production by fed-batch fermentation: selection of process variables. Appl Biochem Biotechnol 98/100:875–883Google Scholar
  120. Rodriguez-Pena JM, Cid VJ, Arroyo J, Nombela C (1998) The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 162:155–160CrossRefPubMedGoogle Scholar
  121. Saha BC, Bothast RJ (1999) Pretreatment and enzymatic saccharification of corn fiber. Appl Biochem Biotechnol 76:65–77Google Scholar
  122. Saha BC, Dien BS, Bothast RJ (1998) Fuel ethanol production from corn fiber—current status and technical prospects. Appl Biochem Biotechnol 70/72:115–125Google Scholar
  123. Sanchez S, Bravo V, Castro E, Moya AJ, Camacho F (1998) The production of xylitol from d-xylose by fermentation with Hansenula polymorpha. Appl Microbiol Biotechnol 50:608–611CrossRefGoogle Scholar
  124. Sanchez S, Bravo V, Castro E, Moya AJ, Camacho F (2002) The fermentation of mixtures Of d-glucose and d-xylose by Candida shehatae, Pichia stipitis or Pachysolen tannophilus to produce ethanol. J Chem Technol Biotechnol 77:641–648CrossRefGoogle Scholar
  125. Sarthy AV, McConaughy BL, Lobo Z, Sundstrom JA, Furlong CE, Hall BD (1987) Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl Environ Microbiol 53:1996–2000PubMedGoogle Scholar
  126. Schneider H, Wang PY, Chan YK, Maleszka R (1981) Conversion of d-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnol Lett 3:89–92Google Scholar
  127. Sedlak M, Ho NWY (2001) Expression of E. coli araBAD operon encoding enzymes for metabolizing l-arabinose in Saccharomyces cerevisiae. Enzyme Microb Technol 28:16–24CrossRefPubMedGoogle Scholar
  128. Shi NQ, Jeffries TW (1998) Anaerobic growth and improved fermentation of Pichia stipitis bearing a URA1 gene from Saccharomyces cerevisiae. Appl Microbiol Biotechnol 50:339–345CrossRefPubMedGoogle Scholar
  129. Shi NQ, Davis B, Sherman F, Cruz J, Jeffries TW (1999) Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production. Yeast 15:1021–1030PubMedGoogle Scholar
  130. Shi NQ, et al (2000) Characterization and complementation of a Pichia stipitis mutant unable to grow on d-xylose or l-arabinose. Appl Biochem Biotechnol 84-86:201–216Google Scholar
  131. Shi NQ, Cruz J, Sherman F, Jeffries TW (2002) SHAM-sensitive alternative respiration in the xylose-metabolizing yeast Pichia stipitis. Yeast 19:1203–1220CrossRefPubMedGoogle Scholar
  132. Slininger PJ, Bothast RJ, Van Cauwenberge JE, Kurtzman CP (1982) Conversion of d-xylose to ethanol by the yeast Pachysolen tannophilus. Biotechnol Bioeng 24:371–384Google Scholar
  133. Smil V (1999) Crop residues: agriculture′s largest harvest—crop residues incorporate more than half of the world agricultural phytomass. Bioscience 49:299–308Google Scholar
  134. Smith CA, Rangarajan M, Hartley BS (1991) d-Xylose (d-glucose) isomerase from Arthrobacter strain NRRL B3728. Purification and properties. Biochem J 277:255–261PubMedGoogle Scholar
  135. Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69:1990–1998CrossRefPubMedGoogle Scholar
  136. Sreenath HK, Jeffries TW (2000) Production of ethanol from wood hydrolyzate by yeasts. Bioresour Technol 72:253–260CrossRefGoogle Scholar
  137. Sreenath HK, Koegel RG, Moldes AB, Jeffries TW, Straub RJ (1999) Enzymic saccharification of alfalfa fiber after liquid hot water pretreatment. Process Biochem 35:33–41CrossRefGoogle Scholar
  138. Sreenath HK, Koegel RG, Moldes AB, Jeffries TW, Straub RJ (2001) Ethanol production from alfalfa fiber fractions by saccharification and fermentation. Process Biochem 36:1199–1204CrossRefGoogle Scholar
  139. Takuma S, et al (1991) Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae. Appl Biochem Biotechnol 28/29:327–340Google Scholar
  140. Tantirungkij M, Nakashima N, Seki T, Yoshida T (1993) Construction of xylose-assimilating Saccharomyces cerevisiae. J Ferment Bioeng 75:83–88Google Scholar
  141. Tantirungkij M, Seki T, Yoshida T (1994) Genetic improvement of Saccharomyces cerevisiae for ethanol production from xylose. Ann NY Acad Sci 721:138–147PubMedGoogle Scholar
  142. Teusink B, Walsh MC, Dam K van, Westerhoff HV (1998) The danger of metabolic pathways with turbo design. Trends Biochem Sci 23:162–169PubMedGoogle Scholar
  143. Thestrup HN, Hahn-Hägerdal B (1995) Xylitol formation and reduction equivalent generation during anaerobic xylose conversion with glucose as cosubstrate in recombinant Saccharomyces cerevisiae expressing the xyl1 gene. Appl Environ Microbiol 61:2043–2045PubMedGoogle Scholar
  144. Thevelein JM, Hohmann S (1995) Trehalose synthase: guard to the gate of glycolysis in yeast? Trends Biochem Sci 20:3–10PubMedGoogle Scholar
  145. Toivari MH, Aristidou A, Ruohonen L, Penttilä M (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3:236–249CrossRefPubMedGoogle Scholar
  146. Toivola A, Yarrow D, Bosch E van den, Dijken JP van, Scheffers WA (1984) Alcoholic fermentation of deuterium-xylose by yeasts. Appl Environ Microbiol 47:1221–1223Google Scholar
  147. Träff KL, Otero Cordero RR, Zyl WH van, Hahn-Hägerdal B (2001) Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67:5668–5674CrossRefPubMedGoogle Scholar
  148. Vandeska E, Amartey S, Kuzmanova S, Jeffries TW (1996) Fed-batch culture for xylitol production by Candida boidinii. Proc Biochem 31:265–270CrossRefGoogle Scholar
  149. Verduyn C, Frank J, Dijken JP van, Scheffers WA (1985a) Multiple forms of xylose reductase in Pachysolen tannophilus CBS 4044. FEMS Microbiol Lett 30:313–317CrossRefGoogle Scholar
  150. Verduyn C, Kleef R van, Frank J, Schreuder H, Dijken JP van, Scheffers WA (1985b) Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem J 226:669–677PubMedGoogle Scholar
  151. Verwaal R, Paalman JW, Hogenkamp A, Verkleij AJ, Verrips CT, Boonstra J (2002) HXT5 expression is determined by growth rates in Saccharomyces cerevisiae. Yeast 19:1029–1038CrossRefPubMedGoogle Scholar
  152. Wahlbom CF, Zyl WH van, Jonsson LJ, Hahn-Hagerdal B, Otero RR (2003) Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res 3:319–326CrossRefPubMedGoogle Scholar
  153. Walfridsson M, Hallborn J, Penttilä M, Keranen S, Hahn-Hägerdal B (1995) Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol 61:4184–4190PubMedGoogle Scholar
  154. Walfridsson M, Bao X, Anderlund M, Lilius G, Bulow L, Hahn-Hägerdal B (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62:4648–4651PubMedGoogle Scholar
  155. Walfridsson M, Anderlund M, Bao X, Hahn-Hägerdal B (1997) Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 48:218–224CrossRefPubMedGoogle Scholar
  156. Wang PY, Schneider H (1980) Growth of yeasts on d-xylulose 1. Can J Microbiol 26:1165–1168PubMedGoogle Scholar
  157. Wang PY, Shopsis C, Schneider H (1980) Fermentation of a pentose by yeasts. Biochem Biophys Res Commun 94:248–254PubMedGoogle Scholar
  158. Weierstall T, Hollenberg CP, Boles E (1999) Cloning and characterization of three genes (SUT13) encoding glucose transporters of the yeast Pichia stipitis. Mol Microbiol 31:871–883PubMedGoogle Scholar
  159. Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128PubMedGoogle Scholar
  160. Wijsman MR, Bruinenberg PM, Dijken JP van, Scheffers WA (1985) Incapacity for anaerobic growth in xylose-fermenting yeasts. Antonie Van Leeuwenhoek 51:563–564Google Scholar
  161. Winkelhausen E, Pittman P, Kuzmanova S, Jeffries TW (1996) Xylitol formation by Candida boidinii in oxygen limited chemostat culture. Biotechnol Lett 18:753–758Google Scholar
  162. Witteveen CFB, Busink R, Vandevondervoort P, Dijkema C, Swart K, Visser J (1989) l-Arabinose and d-xylose catabolism in Aspergillus niger. J Gen Microbiol 135:2163–2171Google Scholar
  163. Wyman CE (1999) Biomass ethanol: technical progress, opportunities, and commercial challenges. Annu Rev Energy Environ 24:189–226CrossRefGoogle Scholar
  164. Yoon G-S, Lee T-S, Kim C, Seo J-H, Ryu Y-W (1996) Characterization of alcohol fermentation and segregation of protoplast fusant of Saccharomyces cerevisiae and Pichia stipitis. J Microbiol Biotechnol 6:286–291Google Scholar
  165. Zaldivar J, et al (2002) Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol 59:436–442CrossRefPubMedGoogle Scholar
  166. Zyl C van, Prior BA, Kilian SG, Brandt EV (1993) Role of d-ribose as a cometabolite in d-xylose metabolism by Saccharomyces cerevisiae. Appl Environ Microbiol 59:1487–1494PubMedGoogle Scholar
  167. Zyl WH van, Eliasson A, Hobley T, Hahn-Hägerdal B (1999) Xylose utilisation by recombinant strains of Saccharomyces cerevisiae on different carbon sources. Appl Microbiol Biotechnol 52:829–833CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.USDA Forest ServiceForest Products LaboratoryMadisonUSA
  2. 2.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations