Applied Microbiology and Biotechnology

, Volume 63, Issue 3, pp 239–248 | Cite as

Bioleaching review part A:

Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation
Mini-Review

Abstract

Bioleaching of metal sulfides is caused by astonishingly diverse groups of bacteria. Today, at least 11 putative prokaryotic divisions can be related to this phenomenon. In contrast, the dissolution (bio)chemistry of metal sulfides follows only two pathways, which are determined by the acid-solubility of the sulfides: the thiosulfate and the polysulfide pathway. The bacterial cell can effect this sulfide dissolution by “contact” and “non-contact” mechanisms. The non-contact mechanism assumes that the bacteria oxidize only dissolved iron(II) ions to iron(III) ions. The latter can then attack metal sulfides and be reduced to iron(II) ions. The contact mechanism requires attachment of bacteria to the sulfide surface. The primary mechanism for attachment to pyrite is electrostatic in nature. In the case of Acidithiobacillus ferrooxidans, bacterial exopolymers contain iron(III) ions, each complexed by two uronic acid residues. The resulting positive charge allows attachment to the negatively charged pyrite. Thus, the first function of complexed iron(III) ions in the contact mechanism is mediation of cell attachment, while their second function is oxidative dissolution of the metal sulfide, similar to the role of free iron(III) ions in the non-contact mechanism. In both cases, the electrons extracted from the metal sulfide reduce molecular oxygen via a complex redox chain located below the outer membrane, the periplasmic space, and the cytoplasmic membrane of leaching bacteria. The dominance of either At. ferrooxidans or Leptospirillum ferrooxidans in mesophilic leaching habitats is highly likely to result from differences in their biochemical iron(II) oxidation pathways, especially the involvement of rusticyanin.

References

  1. Acuña J, Rojas J, Amaro AM, Toledo H, Jerez CA (1992) Chemotaxis of Leptospirillum ferrooxidans and other acidophilic chemolithotrophs: comparison with the Escherichia coli chemosensory system. FEMS Microbiol Lett 96:37–42CrossRefGoogle Scholar
  2. Alfreider A, Vogt C, Babel W (2002) Microbial diversity in an in situ reactor system treating monochlorobenzene-contaminated groundwater as revealed by 16S ribosomal DNA analysis. Syst Appl Microbiol 25:232–240PubMedGoogle Scholar
  3. Andrews GF (1988) The selective adsorption of thiobacilli to dislocation sites on pyrite surfaces. Biotechnol Bioeng 31:378–381Google Scholar
  4. Appia-Ayme C, Guiliani N, Ratouchniak J, Bonnefoy V (1999) Characterization of an operon encoding two c-type cytochromes, an aa3-type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC 33020. Appl Environ Microbiol 65:4781–4787PubMedGoogle Scholar
  5. Bagdigian RM, Meyerson AS (1986) The adsorption of Thiobacillus ferrooxidans on coal surfaces. Biotechnol Bioeng 28:467–479Google Scholar
  6. Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152CrossRefGoogle Scholar
  7. Barr DW, Ingledew WJ, Norris PR (1990) Respiratory chain components of iron-oxidizing, acidophilic bacteria. FEMS Microbiol Lett 70:85–90CrossRefGoogle Scholar
  8. Bevilaqua D, Leite ALLC, Garcia O Jr, Tuovinen OH (2002) Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks. Process Biochem 38:587–592CrossRefGoogle Scholar
  9. Blake RC II, Shute EA, Greenwood MM, Spencer GH, Ingledew WJ (1993a) Enzymes of aerobic respiration on iron. FEMS Microbiol Rev 11:9–18CrossRefPubMedGoogle Scholar
  10. Blake RC II, Shute EA, Waskovsky J, Harrison AP Jr (1993b) Respiratory components in acidophilic bacteria that respire on iron. Geomicrobiol J 10:173–192Google Scholar
  11. Blake RC II, Shute EA, Howard GT (1994) Solubilization of minerals by bacteria: electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite, and sulfur. Appl Environ Microbiol 60:3349–3357Google Scholar
  12. Bond PL, Druschel GK, Banfield JF (2000a) Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol 66:4962–4971PubMedGoogle Scholar
  13. Bond PL, Smriga SP, Banfield JF (2000b) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66:3842–3849PubMedGoogle Scholar
  14. Boon M, Heijnen JJ, Hansford GS (1998) The mechanism and kinetics of bioleaching sulphide minerals. Miner Process Extract Metal Rev 19:107–115Google Scholar
  15. Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20:591–604CrossRefGoogle Scholar
  16. Clark DA, Norris PR (1996) Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142:785–790Google Scholar
  17. Coram NJ, Rawlings DE (2002) Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 degrees C. Appl Environ Microbiol 68:838–845Google Scholar
  18. Cox JC, Boxer DH (1978) The purification and some properties of rusticyanin, a blue copper protein involved in iron(II) oxidation from Thiobacillus ferrooxidans. Biochem J 174:497–502PubMedGoogle Scholar
  19. Das A, Mishra AK, Roy P (1992) Anaerobic growth on elemental sulfur using dissimilar iron reduction by autotrophic Thiobacillus ferrooxidans. FEMS Microbiol Lett 97:167–172CrossRefGoogle Scholar
  20. DiSpirito AA, Dugan PR, Tuovinen OH (1983) Sorption of Thiobacillus ferrooxidans to particulate material. Biotechnol Bioeng 25:1163–1168Google Scholar
  21. Dziurla MA, Achouak W, Lam BT, Heulin T, Berthelin J (1998) Enzyme-linked immunofiltration assay to estimate attachment of thiobacilli to pyrite. Appl Environ Microbiol 64:2937–2942PubMedGoogle Scholar
  22. Edwards KJ, Rutenberg AD (2001) Microbial response to surface microtopography: the role of metabolism in localized mineral dissolution. Chem Geol 180:19–32CrossRefGoogle Scholar
  23. Edwards KJ, Schrenk MO, Hamers R, Banfield JF (1998) Microbial oxidation of pyrite: experiments using microorganisms from an extreme acidic environment. Am Mineral 83:1444–1453Google Scholar
  24. Edwards KJ, Goebel BM, Rodgers TM, Schrenk MO, Gihring TM, Cardona MM, Mcguire MM, Hamers RJ, Pace NR, Banfield JF (1999) Geomicrobiology of pyrite (FeS2) dissolution: case study at Iron Mountain, California. Geomicrobiol J 16:155–179CrossRefGoogle Scholar
  25. Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 279:1796–1799CrossRefGoogle Scholar
  26. Ehrlich HL (2002) Geomicrobiology, 4th edn. Dekker, New YorkGoogle Scholar
  27. Fowler TA, Crundwell FK (1998) Leaching of zinc sulfide by Thiobacillus ferrooxidans: experiments with a controlled redox potential indicate no direct bacterial mechanism. Appl Environ Microbiol 64:3570–3575PubMedGoogle Scholar
  28. Fowler TA, Crundwell FK (1999) Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions. Appl Environ Microbiol 65:5285–5292Google Scholar
  29. Fowler TA, Holmes PR, Crundwell FK (1999) Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl Environ Microbiol 65:2987–2993PubMedGoogle Scholar
  30. Fuchs T, Huber H, Teiner K, Burggraf S, Stetter KO (1995) Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany. Syst Appl Microbiol 18:560–566Google Scholar
  31. Fuchs T, Huber H, Burggraf S, Stetter KO (1996) 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov. Syst Appl Microbiol 19:56–60Google Scholar
  32. Gehrke T (1998) Bedeutung extrazellulärer polymerer Substanzen von Thiobacillus ferrooxidans für die mikrobielle Besiedelung und Laugung von Pyrit und Schwefel. Dissertation, University of Hamburg, HamburgGoogle Scholar
  33. Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747Google Scholar
  34. Gehrke T, Hallmann R, Kinzler K, Sand W (2001) The EPS of Acidithiobacillus ferrooxidans—a model for structure-function relationships of attached bacteria and their physiology. Water Sci Technol 43:159–167Google Scholar
  35. Giudici-Orticoni MT, Guerlesquin F, Bruschi M, Nitschke W (1999) Interaction-induced redox switch in the electron transfer complex rusticyanin-cytochrome c 4. J Biol Chem 274:30365–30369CrossRefPubMedGoogle Scholar
  36. Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrateva TF, Moore ER, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50:997–1006PubMedGoogle Scholar
  37. Grützner T (2001) Auswirkungen von Acidithiobacillus ferrooxidans auf die Flotierbarkeit sulfidischer Minerale. Diploma thesis, TU Clausthal, Clausthal-ZellerfeldGoogle Scholar
  38. Hallberg KB, Johnson DB (2001) Biodiversity of acidophilic prokaryotes. Adv Appl Microbiol 49:37–84PubMedGoogle Scholar
  39. Hallmann R, Friedrich A, Koops H-P, Pommerening-Röser A, Rohde K, Zenneck C, Sand W (1993) Physiological characteristics of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans and pyhsiochemical factors influence microbial metal leaching. Geomicrobiol J 10:193–206Google Scholar
  40. Hansford GS (1997) Recent developments in modelling the kinetics of bioleaching sulphide minerals. In: Rawlings DE (ed) Biomining: theory, microbes and industrial processes. Springer, Berlin Heidelberg New York, pp 153–175Google Scholar
  41. Hippe H (2000) Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). Int J Syst Evol Microbiol 50:501–503PubMedGoogle Scholar
  42. Hiraishi A, Shimada K (2001) Aerobic anoxygenic photosynthetic bacteria with zinc-bacteriochlorophyll. J Gen Appl Microbiol 47:161–180PubMedGoogle Scholar
  43. Hiraishi A, Nagashima KV, Matsuura K, Shimada K, Takaichi S, Wakao N, Katayama Y (1998) Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov. Int J Syst Bacteriol 48:1389–1398PubMedGoogle Scholar
  44. Hiraishi A, Matsuzawa Y, Kanbe T, Wakao N (2000) Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriophyll-containing bacterium isolated from acidic environments. Int J Syst Evol Microbiol 50:1539–1546PubMedGoogle Scholar
  45. Ingledew WJ, Cobley JG (1980) A potentiometric and kinetic study on the respiratory chain of ferrous-iron-grown Thiobacillus ferrooxidans. Biochim Biophys Acta 590:141–158CrossRefPubMedGoogle Scholar
  46. Johnson DB (1998) Biodiversity and ecology of acidophilic microoganisms. FEMS Microbiol Ecol 27:307–317Google Scholar
  47. Johnson B, Roberto FF (1997) Heterotrophic acidophiles and their roles in the bioleaching of sulfide minerals. In: Rawlings DE (ed) Biomining: theory, microbes and industrial processes. Springer, Berlin Heidelberg New York, pp 259–279Google Scholar
  48. Kai M, Yano T, Fukumori Y, Yamanaka T (1989) Cytochrome oxidase of an acidophilic iron-oxidizing bacterium, Thiobacillus ferrooxidans, functions at pH 3.5. Biochem Biophys Res Commun 160:839–843PubMedGoogle Scholar
  49. Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov., and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516PubMedGoogle Scholar
  50. Kurosawa N, Itoh YH, Iwai T, Sugai A, Uda I, Kimura N, Horiuchi T, Itoh T (1998) Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales. Int J Syst Bacteriol 48:451–456PubMedGoogle Scholar
  51. Lemesle-Meunier D, Brasseur G, Tron P, Bennaroch D, Nitschke W, Elbehti A (2001) The membrane-bound c type cytochromes and the interaction between the downhill and uphill electron transfer pathways in the acidophilic chemolithotrophic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans. In: Ciminelli VST, Garcia O Jr (eds) Process metallurgy, vol 9A. Elsevier, Amsterdam, pp 299–308Google Scholar
  52. Little B, Ray B, Pope R, Franklin M, White DC (2000) Spatial and temporal relationships between localised corrosion and bacterial activity on iron-containing substrata. In: Sequeira CAC (ed) Microbial corrosion. European Federation of Corrosion Publications, no 29. Institute of Materials, London, pp 21–35Google Scholar
  53. Luther GW III (1987) Pyrite oxidation and reduction: molecular orbital theory considerations. Geochim Cosmochim Acta 51:3193–3199CrossRefGoogle Scholar
  54. Medvedev D, Stuchebrukhov AA (2001) DNA repair mechanism by photolyase: electron transfer path from the photolyase catalytic cofactor FADH to DNA thymine dimer. J Theor Biol 210:237–248CrossRefPubMedGoogle Scholar
  55. Meruane G, Salhe C, Wiertz J, Vargas T (2002) Novel electrochemical-enzymatic model which quantifies the effect of the solution E h on the kinetics of ferrous iron oxidation with Acidithiobacillus ferrooxidans. Biotechnol Bioeng 80:280–288CrossRefPubMedGoogle Scholar
  56. Meyer G, Schneider-Merck T, Böhme S, Sand W (2002) A simple method for investigations on the chemotaxis of A. ferrooxidans and D. vulgaris. Acta Biotechnol 22:391–399CrossRefGoogle Scholar
  57. Moses CO, Nordstrom DK, Herman JS, Mills AL (1987) Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim Cosmochim Acta 51:1561–1571Google Scholar
  58. Mustin C, de Donato P, Berthelin J, Marion P (1993) Surface sulphur as promoting agent of pyrite leaching by Thiobacillus ferrooxidans. FEMS Microbiol Rev 11:71–78CrossRefGoogle Scholar
  59. NIST (2003) NIST critical selected stability constants of metal complexes database. NIST standard reference database 46, ver 7.0. National Institute of Standards and Technology, Gaithersburg, Md.Google Scholar
  60. Norris PR, Barr DW, Hinson D (1988) Iron and mineral oxidation by acidophilic bacteria: affinities for iron and attachment to pyrite. In: Norris PR, Kelly DP (eds) Biohydrometallurgy. Proceedings of the International Symposium. Science and Technology Letters, Kew, pp 43–59Google Scholar
  61. Norris PR, Clark DA, Owen JP, Waterhouse S (1996) Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiology 142:775–783PubMedGoogle Scholar
  62. Norris PR, Burton NP, Foulis NAM (2000) Acidophiles in bioreactor mineral processing. Extremophiles 4:71–76CrossRefPubMedGoogle Scholar
  63. Ohmura N, Kitamura K, Saiki H (1993) Selective adhesion of Thiobacillus ferrooxidans to pyrite. Appl Environ Microbiol 59:4044–4050Google Scholar
  64. Ohmura N, Sasaki K, Matsumoto N, Saiki H (2002) Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. J Bacteriol 184:2081–2087CrossRefPubMedGoogle Scholar
  65. Olson GJ, Brierley JA, Brierley CL (2003) Progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol DOI 10.2007/s00253-003-1404-6Google Scholar
  66. Pronk JT, Meulenberg R, Hazeu W, Bos P, Kuenen JG (1990) Oxidation of reduced inorganic sulphur compounds by acidophilic thiobacilli. FEMS Microbiol Rev 75:293–306CrossRefGoogle Scholar
  67. Pronk JT, de Bruyn JC, Bos P, Kuenen JG (1992) Anaerobic growth of Thiobacillus ferrooxidans. Appl Environ Microbiol 58:2227–2230Google Scholar
  68. Rawlings DE (1997) Biomining: theory, microbes and industrial processes. Springer, Berlin Heidelberg New YorkGoogle Scholar
  69. Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91CrossRefPubMedGoogle Scholar
  70. Rawlings DE, Tributsch H, Hansford GS (1999) Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145:5–13PubMedGoogle Scholar
  71. Rimstidt JD, Vaughan DJ (2003) Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta 67:873–880CrossRefGoogle Scholar
  72. Rodriguez-Leiva M, Tributsch H (1988) Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite. Arch Microbiol 149:401–405Google Scholar
  73. Rohwerder T, Sand W (2003) The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology 149:1699–1709CrossRefPubMedGoogle Scholar
  74. Rohwerder T, Jozsa P-G, Gehrke T, Sand W (2002) Bioleaching. In: Bitton G (ed) Encyclopedia of environmental microbiology, vol 2. Wiley, New York, pp 632–641Google Scholar
  75. Sampson MI, Phillips CV, Blake RC II (2000) Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides. Min Eng 13:373–389CrossRefGoogle Scholar
  76. Sand W, Rohde K, Sobotke B, Zenneck C (1992) Evaluation of Leptospirillum ferrooxidans for leaching. Appl Environ Microbiol 58:85–92Google Scholar
  77. Sand W, Gehrke T, Hallmann R, Schippers A (1995) Sulfur chemistry, biofilm, and the (in)direct attack mechanism—a critical evaluation of bacterial leaching. Appl Microbiol Biotechnol 43:961–966Google Scholar
  78. Sand W, Gehrke T, Jozsa P-G, Schippers A (2001) (Bio)chemistry of bacterial leaching—direct vs indirect bioleaching. Hydrometallurgy 59:159–175CrossRefGoogle Scholar
  79. Sanhueza A, Ferrer IJ, Vargas T, Amils R, Sánchez C (1999) Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties. Hydrometallurgy 51:115–129CrossRefGoogle Scholar
  80. Schippers A, Sand W (1999) Bacterial leaching of metal sulfide proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321PubMedGoogle Scholar
  81. Schippers A, Jozsa P-G, Sand W (1996) Sulfur chemistry in bacterial leaching of pyrite. Appl Environ Microbiol 62:3424–3431Google Scholar
  82. Schippers A, Rohwerder T, Sand W (1999) Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal. Appl Microbiol Biotechnol 52:104–110CrossRefGoogle Scholar
  83. Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279:1519–1522CrossRefPubMedGoogle Scholar
  84. Shrihari RK, Modak JM, Kumar R, Gandhi KS (1995) Dissolution of particles of pyrite mineral by direct attachment of Thiobacillus ferrooxidans. Hydrometallurgy 38:175–187CrossRefGoogle Scholar
  85. Singer PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167:1121–1123Google Scholar
  86. SME (2000) Proceedings from the fifth international conference on acid rock drainage (ICARD), vol 1–2. Society for Mining, Metallurgy, and Exploration, Littleton, Colo.Google Scholar
  87. Solari JA, Huerta G, Escobar B, Vargas T, Badilla-Ohlbaum R, Rubio J (1992) Interfacial phenomena affecting the adhesion of Thiobacillus ferrooxidans to sulphide mineral surfaces. Colloid Surf 69:159–166CrossRefGoogle Scholar
  88. Steudel R (1996) Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes. Ind Eng Chem Res 35:1417–1423CrossRefGoogle Scholar
  89. Vandevivere P, Kirchman DL (1993) Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl Environ Microbiol 59:3280–3286Google Scholar
  90. Yamanaka T, Fukumori Y (1995) Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans. FEMS Microbiol Rev 17:401–413CrossRefPubMedGoogle Scholar
  91. Yamanaka T, Yano T, Kai M, Tamegai H, Sato A, Fukumori Y (1991) The electron transfer system in an acidophilic iron-oxidizing bacterium. In: Mukohata (ed) New era of bioenergetics. Academic Press, Tokyo, pp 223–246Google Scholar
  92. Yarzábal A, Brasseur G, Bonnefoy V (2002a) Cytochromes c of Acidithiobacillus ferrooxidans. FEMS Microbiol Lett 209:189–195CrossRefPubMedGoogle Scholar
  93. Yarzábal A, Brasseur G, Ratouchniak J, Lund K, Lemesle-Meunier D, DeMoss JA, Bonnefoy V (2002b) The high-molecular-weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J Bacteriol 184:313–317CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Institut für Allgemeine Botanik und Botanischer Garten, Abteilung MikrobiologieUniversität HamburgHamburgGermany
  2. 2.Center for Environmental Research Leipzig-HalleLeipzigGermany

Personalised recommendations