Applied Microbiology and Biotechnology

, Volume 64, Issue 3, pp 396–402 | Cite as

Diversity of l-leucine catabolism in various microorganisms involved in dairy fermentations, and identification of the rate-controlling step in the formation of the potent flavour component 3-methylbutanal

  • B. A. Smit
  • W. J. M. Engels
  • J. T. M. Wouters
  • G. SmitEmail author
Original Paper


Various microorganisms, belonging to the genera Lactococcus, Lactobacillus, Streptococcus, Leuconostoc, Bifidobacterium, Propionibacterium, Brevibacterium, Corynebacterium and Arthrobacter, used in dairy fermentations such as cheese making, were analysed for their potential to convert leucine into flavour components, most notably 3-methylbutanal. A large variation between and within species was observed for various enzyme activities involved in the conversion pathway, e.g. transaminases, α-hydroxy acid dehydrogenase and α-keto acid decarboxylase. In particular, α-keto acid decarboxylase activity—leading to 3-methylbutanal—was found to be present in only two of the strains tested. It is proposed that this activity is rate-controlling in the conversion pathway leading to the flavour compound 3-methylbutanal.


Flavour Compound Decarboxylase Activity Isovaleric Acid Flavour Component Flavour Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by Stichting J. Mesdag Fonds, The Netherlands. The authors thank Charles Slangen and Rita Eenling for technical assistance.


  1. Amarita F, Fernandez Espla D, Requena T, Pelaez C (2001) Conversion of methionine to methional by Lactococcus lactis. FEMS Microbiol Lett 204:189–195CrossRefPubMedGoogle Scholar
  2. Ayad EHE, Verheul A, de Jong C, Wouters JTM, Smit G (1999) Flavour forming abilities and amino acid requirements of Lactococcus lactis strains isolated from artisanal and non-dairy origin. Int Dairy J 9:725–735CrossRefGoogle Scholar
  3. Ayad EHE, Verheul A, Wouters JTM, Smit G (2000) Application of wild starter cultures for flavour development in pilot plant cheese making. Int Dairy J 10:169–179CrossRefGoogle Scholar
  4. Bockelmann W, Hoppe Seyler T (2001) The surface flora of bacterial smear-ripened cheeses from cow’s and goat’s milk. Int Dairy J 11:307–314CrossRefGoogle Scholar
  5. Curioni PMG, Bosset JO (2002) Key odorants in various cheese types as determined by gas chromatography-olfactometry. Int Dairy J 12:959–984CrossRefGoogle Scholar
  6. Engels WJM, Visser S (1994) Isolation and comparative characterization of components that contribute to the flavour of different types of cheese. Neth Milk Dairy J 48:127–140Google Scholar
  7. Engels WJM, Dekker R, de Jong C, Neeter R, Visser S (1997) A comparative study of volatile compounds in the water-soluble fraction of various types of ripened cheese. Int Dairy J 7:255–263Google Scholar
  8. Engels WJM, Alting AC, Arntz MMTG, Gruppen H, Voragen AGJ, Smit G, Visser S (2000) Partial purification and characterization of two aminotransferases from Lactococcus lactis subsp. cremoris B78 involved in the catabolism of methionine and branched-chain amino acids. Int Dairy J 10:443–452CrossRefGoogle Scholar
  9. Exterkate FA, Alting AC (1990) Involvement of cell-envelope-located peptidases in the conversion of the alphas1-casein fragment f(1–23) in Gouda cheese. Brief Communications of the XXIII International Dairy Congress, Montreal, p 343Google Scholar
  10. Hansen BV, Houlberg U, Ardo Y (2001) Transamination of branched-chain amino acids by a cheese related Lactobacillus paracasei strain. Int Dairy J 11:225–233CrossRefGoogle Scholar
  11. Hugenholtz J, Starrenburg M, Boels I, Sybesma W, Chaves AC, Mertens A, Kleerenbezem M (2000) Metabolic engineering of lactic acid bacteria for the improvement of fermented dairy products. In: Hofmeyr J-HS, Rohwer JM, Snoep JL (eds) Animating the cellular map. Proceedings of BTK 2000, the 9th International BioThermoKinetics meeting 3–8 April 2000. Stellenbosch University Press, South Africa, pp 3009–3013Google Scholar
  12. Igoshi K (1986) Mechanism of proteolysis during cheese ripening. Jpn J Dairy Food Sci [Rakuno Kagaku Shokuhin no Kenkyu] 35:A307–A314Google Scholar
  13. Jensen NBS, Melchiorsen CR, Jokumsen KV, Villadsen J (2001) Metabolic behavior of Lactococcus lactis MG1363 in microaerobic continuous cultivation at a low dilution rate. Appl Environ Microbiol 67:2677–2682CrossRefPubMedGoogle Scholar
  14. Libudzisz Z, Piatkiewicz A, Oberman H, Lubnauer M (1993) Heterogeneity of the physiological activity of Lactococcus and Leuconostoc sp. strains. Acta Microbiol Pol 42:181–192Google Scholar
  15. Nierop Groot MN, de Bont JAM (1998) Conversion of phenylalanine to benzaldehyde initiated by an aminotransferase in Lactobacillus plantarum. Appl Environ Microbiol 64:3009–3013PubMedGoogle Scholar
  16. Nosova T, Jousimies Somer H, Jokelainen K, Heine R, Salaspuro M (2000) Acetaldehyde production and metabolism by human indigenous and probiotic Lactobacillus and Bifidobacterium strains. Alcohol Alcohol 35:561–568CrossRefPubMedGoogle Scholar
  17. Oku H, Kaneda T (1988) Biosynthesis of branched-chain fatty acids in Bacillus subtilis. A decarboxylase is essential for branched-chain fatty acid synthetase. J Biol Chem 263:18386–18396PubMedGoogle Scholar
  18. Sable S, Cottenceau G (1999) Current knowledge of soft cheeses flavor and related compounds. J Agric Food Chem 47:4825–4836CrossRefPubMedGoogle Scholar
  19. Sarkar S, Misra AK (1995) Recent trends in utilization of Propionibacterium: a review. J Dairying Food Home Sci 14:1–16Google Scholar
  20. Smit G, Boven Av, Rippen M, Kruyswijk Z, Van Boven A (1998) Control of debittering activity of cheese starters. Cheese Sci 53:113Google Scholar
  21. Smit G, Verheul A, van Kranenburg R, Ayad E, Siezen R, Engels W (2000) Cheese flavour development by enzymatic conversions of peptides and amino acids. Food Res Int 33:153–160CrossRefGoogle Scholar
  22. Smit G, van Hylckama Vlieg JET, Smit BA, Ayad EHE, Engels WJM (2002) Fermentative formation of flavour compounds by lactic acid bacteria. Aust J Dairy Technol 57:61–68Google Scholar
  23. Ter Schure EG, Flikweert MT, Van Dijken JP, Pronk JT, Verrips CT (1998) Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae. Appl Environ Microbiol 64:1303–1307PubMedGoogle Scholar
  24. Thierry A, Maillard MB, Yvon M (2002) Conversion of l-leucine to isovaleric acid by Propionibacterium freudenreichii TL 34 and ITGP23. Appl Environ Microbiol 68:608–615CrossRefPubMedGoogle Scholar
  25. Tucker JS, Morgan ME (1967) Decarboxylation of α-keto acids by Streptococcus lactis var. maltigenes. Appl Environ Microbiol 15:694–700Google Scholar
  26. Van Kranenburg R, Kleerebezem M, van Hylckama Vlieg J, Ursing BM, Boekhorst J, Smit BA, Ayad EHE, Smit G, Siezen RJ (2002) Flavour formation from amino acids by lactic acid bacteria: predictions from genome sequence analysis. Int Dairy J 12:111–121CrossRefGoogle Scholar
  27. Visser S (1993) Proteolytic enzymes and their relation to cheese ripening and flavor: an overview. J Dairy Sci 76:329–350Google Scholar
  28. Wallace JM, Fox PF (1997) Effect of adding free amino acids to cheddar cheese curd on proteolysis, flavour and texture development. Int Dairy J 7:157–167CrossRefGoogle Scholar
  29. Weimer B, Seefeldt K, Dias B (1999) Sulfur metabolism in bacteria associated with cheese. Antonie van Leeuwenhoek 76:247–261CrossRefPubMedGoogle Scholar
  30. Yvon M, Rijnen L (2001) Cheese flavour formation by amino acid catabolism. Int Dairy J 11:185–201CrossRefGoogle Scholar
  31. Yvon M, Berthelot S, Gripon JC (1998) Adding alpha-ketoglutarate to semi-hard cheese curd highly enhances the conversion of amino acids to aroma compounds. Int Dairy J 8:889–898CrossRefGoogle Scholar
  32. Zourari A, Accolas JP, Desmazeaud MJ (1992) Metabolism and biochemical characteristics of yogurt bacteria. A review. Lait 72:1–34Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • B. A. Smit
    • 1
  • W. J. M. Engels
    • 1
  • J. T. M. Wouters
    • 2
  • G. Smit
    • 1
    Email author
  1. 1.Department of Flavour, Nutrition and IngredientsNIZO food researchEdeThe Netherlands
  2. 2.Department of Agrotechnology and Food SciencesWageningen UniversityWageningenThe Netherlands

Personalised recommendations