Applied Microbiology and Biotechnology

, Volume 64, Issue 1, pp 112–119 | Cite as

Metabolic analysis of acetate accumulation during xylose consumption by Paenibacillus polymyxa

  • B. Marwoto
  • Y. Nakashimada
  • T. Kakizono
  • N. Nishio
Original Paper

Abstract

Paenibacillus polymyxa ATCC 12321 produced more acetic acid and less butanediol from xylose than from glucose. The product yields from xylose were ethanol (0.72 mol/mol sugar), (R,R)-2,3-butanediol (0.31 mol/mol sugar), and acetate (0.38 mol/mol sugar) while those from glucose were ethanol (0.74 mol/mol sugar), (R,R)-2,3-butanediol (0.46 mol/mol sugar), and acetate (0.05 mol/mol sugar). Higher acetate kinase activity and lower acetate uptake ability were found in xylose-grown cells than in glucose-grown cells. Furthermore, phosphoketolase activity was higher in xylose-grown cells than in glucose-grown cells. In fed-batch culture on xylose, glucose feeding raised the butanediol yield to 0.56 mol/mol sugar and reduced acetate accumulation to 0.04 mol/mol sugar.

References

  1. de Mass C, Jansen NB,Tsao T (1988) Production of optically active 2,3-butanediol by Bacillus polymyxa. Biotechnol Bioeng 31:366–377Google Scholar
  2. Erickson LE, Minkevich IG,Eroshin VK (1979) Utilization of mass-energy balance regularities in the analysis of continuous-culture data. Biotechnol Bioeng 21:575–591Google Scholar
  3. Jansen NB,Tsao GT (1983) Bioconversion of pentose to 2,3-butanediol by Klebsiella pneumoniae. Adv Biochem Eng Biotechnol 27:85–99PubMedGoogle Scholar
  4. Jeffries TW (1983) Utilization of xylose by bacteria, yeast and fungi. Adv Biochem Eng Biotechnol 27:1-32PubMedGoogle Scholar
  5. Laube VM, Groleau D,Martin SM (1984) 2,3-Butanediol production from xylose and other hemicellulose components by Bacillus polymyxa. Biotechnol Lett 6:257Google Scholar
  6. Marounek M, Petr O (1995) Fermentation of glucose and xylose in ruminal strains of Butyrivibrio fibrisolvens. Lett in Appl Microbiol 21:272–276Google Scholar
  7. Marwoto B, Nakashimada Y, Kakizono T,Nishio N (2002) Enhancement of (R,R)-2,3-butanediol production from xylose by Paenibacillus polymyxa at elevated temperatures. Biotechnol Lett 24:109–114CrossRefGoogle Scholar
  8. Nakashimada Y, Kanai K,Nishio N (1998) Optimization of dilution rate, pH and oxygen supply on optical purity of 2,3-butanediol produced by Paenibacillus polymyxa in chemostat culture. Biotechnol Lett 20:1133–1138CrossRefGoogle Scholar
  9. Nakashimada Y, Marwoto B, Kakizono T, Nishio N (2000) Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa. J Biosci Bioeng 90:661–664CrossRefGoogle Scholar
  10. Ratledge C,Holdsworth JE (1985) Properties of a pentulose-5-phosphate phosphoketolase from yeasts grown on xylose. Appl Microbiol Biotechnol 22:217–221Google Scholar
  11. Rose IA, G-Manago M, Korey SR,Ochoa S (1954) Enzymatic phosphorylation of acetate. J Biol Chem 21:737–756Google Scholar
  12. Senac T,Hahn-Hagerdal B (1990) Intermediary metabolite concentration in xyluloseand glucose-fermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 56:120–126Google Scholar
  13. Smith PK, Krohn RI, Hermanson GT, Malia AK, Goeke NM, Olson BJ,Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • B. Marwoto
    • 1
  • Y. Nakashimada
    • 1
  • T. Kakizono
    • 1
  • N. Nishio
    • 1
  1. 1.Department of Molecular BiotechnologyHiroshima University KagamiyamaJapan

Personalised recommendations