Skip to main content
Log in

An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A two-plasmid dual reporter Escherichia coli biosensor was developed using the genes for bacterial bioluminescence and a mutant of the green fluorescent protein, GFPuv4. To achieve this, the two plasmids, which were derivatives of pBR322 and pACYC184, had compatible origins of replication and different antibiotic selection markers: ampicillin and tetracycline. The parent strains DK1 and ACRG43, each carrying a single plasmid with one of the fusion genes (strain DK1 harboring a fusion of the katG promoter to the lux operon while in ACRG43, the recA promoter was fused with the GFP gene), were responsive to oxidative and DNA damage, respectively, resulting in higher bioluminescence or fluorescence under the relevant toxic conditions. The responses of the dual sensor strain, DUAL22, to various toxicants, e.g., mitomycin C, N-methyl-N-nitro-N-nitrosoguanidine, hydrogen peroxide and cadmium chloride, were characterized and compared with the responses of the parent strains to the same chemicals. Finally, several chemical mixtures that cause various stress responses were tested to demonstrate the ability of this biosensor to detect specific stress responses within a multiple toxicity environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a, b.
Fig. 3a, b.
Fig. 4a, b.

Similar content being viewed by others

References

  • Aldsworth TG, Sharman RL, Dodd CE (1999) Bacterial suicide through stress. Cell Mol Life Sci 56:378–383

    CAS  PubMed  Google Scholar 

  • Asad NR, Asad LM, Silva AB, Felzenszwalb I, Leitao AC (1998) Hydrogen peroxide effects in Escherichia coli cells. Acta Biochim Pol 45:677–690

    CAS  PubMed  Google Scholar 

  • Belkin S, Smulski DR, Vollmer AC, Van Dyk TK, LaRossa RA (1996) Oxidative stress detection with Escherichia coli harboring a katG′::lux fusion. Appl Environ Microbiol 62:2252–2256

    CAS  PubMed  Google Scholar 

  • Bruce D (1991) Regulation of bacterial oxidative stress genes. Annu Rev Genet 25:315–337

    CAS  PubMed  Google Scholar 

  • Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63:915–948

    Article  CAS  PubMed  Google Scholar 

  • Engebrecht J, Silverman M (1984) Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci USA 81:4154–4158

    CAS  PubMed  Google Scholar 

  • Feige U, Morimoto RI, Yahara I, Polla BS (1996) Transcriptional regulators for oxidative stress inducible genes in prokaryotes. In: Stress-inducible cellular responses. Deutsche Bibliothek Cataloging-in-Publication Data, Deutsche Bibliothek, Frankfurt, pp 240–243

  • Greenberg JT, Monach P, Chou JH, Josephy PD, Demple B (1990) Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci USA 87:6181–6185

    CAS  PubMed  Google Scholar 

  • Hidalgo E, Nunoshiba T, Demple B (1994) soxRS oxidative stress regulon of Escherichia coli. Methods Mol Genet 3:325–339

    CAS  Google Scholar 

  • Ito Y, Suzuki M, Husimi Y (1999) A novel mutant of green fluorescent protein with enhanced sensitivity for microanalysis at 488 nm excitation. Biochem Biophys Res Commun 264:556–560

    CAS  PubMed  Google Scholar 

  • Justus T, Thomas SM (1999) Evaluation of transcriptional fusions with green fluorescent protein versus luciferase as reporters in bacterial mutagenicity tests. Mutagenesis 14:351–356

    CAS  PubMed  Google Scholar 

  • Kenyon CJ, Brent R, Ptashne M, Walker GC (1982) Regulation of damage-inducible genes in Escherichia coli. J Mol Biol 160:445–457

    CAS  PubMed  Google Scholar 

  • Kim BC, Gu MB (2003) A bioluminescent sensor for high throughput toxicity classification. Biosens Bioelectron 18:1015–1021

    CAS  PubMed  Google Scholar 

  • Kim YH, Lee J, Ahn JY, Gu MB, Moon SH (2002) Enhanced degradation of an endocrine-disrupting chemical, butyl benzyl phthalate, by Fusarium oxysporum f. sp. pisi cutinase. Appl Environ Microbiol 68:4684–4688

    Article  CAS  PubMed  Google Scholar 

  • Kostrzynska M, Leung KT, Lee H, Trevors JT (2002) Green fluorescent protein-based biosensor for detecting SOS-inducing activity of genotoxic compounds. J Microb Methods 48:43–51

    CAS  Google Scholar 

  • Kozubek S, Ogievertskaya MM, Krasavin EA, Drasil V, Soska J (1990) Investigation of the SOS response of Escherichia coli after γ irradiation by the means of the SOS chromotest. Mutat Res 230:1–7

    CAS  PubMed  Google Scholar 

  • Li VS, Choi D, Tang M, Kohn H (1995) Structural requirements for Mitomycin C DNA bonding. Biochemistry 34:7120–7126

    CAS  PubMed  Google Scholar 

  • Marincs F, White DW (1994) Immobilization of Escherichia coli expressing the lux genes of Xenorhabdus luminescens. Appl Environ Microbiol 60:3862–3863

    CAS  PubMed  Google Scholar 

  • Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 55:123–142

    CAS  PubMed  Google Scholar 

  • Meighen EA, Dunlap PV (1993) Physiological, biochemical and genetic control of bacterial bioluminescence. Adv Microb Physiol 34:2–58

    Google Scholar 

  • Millard JT, Spencer RJ, Hopkins PB (1998) Effect of nucleosome structure on DNA interstrand cross-linking reactions. Biochemistry 37:5211–5219

    CAS  PubMed  Google Scholar 

  • Min J, Kim EJ, LaRossa RA, Gu MB (1999) Distinct responses of a recA::luxCDABE Escherichia coli strain to direct and indirect DNA damaging agents. Mutat Res 442:61–68

    CAS  PubMed  Google Scholar 

  • Min J, Lee CW, Moon SH, LaRossa RA, Gu MB (2000) Detection of radiation effects using recombinant bioluminescent Escherichia coli strains. Radiat Environ Biophys 39:41–45

    CAS  PubMed  Google Scholar 

  • Nunoshiba T, Nishioka H (1991) 'Rec-lac test' for detecting SOS-inducing activity of environmental genotoxic substances. Mutat Res 245: 71–77

    Google Scholar 

  • Ptitsynm LR, Horneck G, Komova O, Kozubek S, Krasavin EA, Bonev M, Rettberg P (1997) A biosensor for environmental genotoxin screening based on an SOS lux assay in recombinant Escherichia coli cells. Appl Environ Microbiol 63:4377–4384

    CAS  PubMed  Google Scholar 

  • Quillardet P, Hofnung M (1993) The SOS chromotest: a review. Mutat Res 297:235–279

    CAS  PubMed  Google Scholar 

  • Quillardet P, Frelat G, Nguyen VD, Hofnung M (1989) Detection of ionizing radiations with the SOS chromotest, a bacterial short-term test for genotoxic agents. Mutat Res 216:251–257

    CAS  PubMed  Google Scholar 

  • Sassanfar M, Roberts JW (1990) Nature of the SOS-inducing signal in Escherichia coli: the involvement of DNA replication. J Mol Biol 212:79–96

    CAS  PubMed  Google Scholar 

  • Scheller F, Schmid RD (1991) Biosensors: fundamentals, technologies and applications. VCH, Weinheim, Germany

  • Stewart GSAB, Williams P (1992) lux genes and the applications of bacterial bioluminescence. J Genet Microbiol 138:1289–1300

    CAS  Google Scholar 

  • Storz G, Farr SB, Ames BN (1990) Bacterial defenses against oxidative stress. Trends Genet 6:363–368

    CAS  PubMed  Google Scholar 

  • Thomson JM, Parrott WA (1998) pMECA: a cloning plasmid with 44 unique restriction sites that allows selection of recombinants based on colony size. Biotechniques 24:922–928

    CAS  PubMed  Google Scholar 

  • Van Dyk TK, Belkin S, Vollmer AC, Reed TR, Smulski DR, LaRossa RA (1994) Fusions of Vibrio fischeri lux genes to Escherichia coli stress promoters: detection of environmental stress. In: Campbell AK, Kricka LJ, Stanley PE (eds) Bioluminescence and chemiluminescence: fundamentals and applied aspects. Wiley, Chichester, UK, pp 147–150

  • Vogel EW, Asby J (1997) Structure-activity relationships: experimental approaches. In: Tardiff RG, Lohman PHM, Wogan GN (eds) Methods to assess DNA damage and repair: interspecies comparisons. Wiley, New York, pp 231–254

  • Vollmer AC, Belkin S, Smulski DR, Van Dyk TK, LaRossa RA (1997) Detection of DNA damage by use of Escherichia coli carrying recA′::lux, uvrA′::lux, or alkA′::lux reporter plasmids. Appl Environ Microbiol 63:2566–2571

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. F. Marincs for pLITE201, Dr. J.M. Thomson for pMECA and Dr. Robert LaRossa for pkatG::LuxCDABE, pRecA::LuxCDABE and pDEW201, and New England Biolabs for providing pACYC184. Robert would also like to thank the Lord Jesus for giving him the chance to do what he loves. This research was supported by the National Research Laboratory (2001 NRL) program of the Korea Institute of Science and Technology Evaluation and Planning (Project No. M10104000094–01J000004100). We are grateful for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, R.J., Gu, M.B. An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage. Appl Microbiol Biotechnol 64, 46–52 (2004). https://doi.org/10.1007/s00253-003-1418-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1418-0

Keywords

Navigation