Skip to main content
Log in

Biotechnology in the wood industry

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Wood is a natural, biodegradable and renewable raw material, used in construction and as a feedstock in the paper and wood product industries and in fuel production. Traditionally, biotechnology found little attention in the wood product industries, apart from in paper manufacture. Now, due to growing environmental concern and increasing scientific knowledge, legal restrictions to conventional processes have altered the situation. Biotechnological approaches in the area of wood protection aim at enhancing the treatability of wood with preservatives and replacing chemicals with biological control agents. The substitution of conventional chemical glues in the manufacturing of board materials is achieved through the application of fungal cultures and isolated fungal enzymes. Moreover, biotechnology plays an important role in the waste remediation of preservative-treated waste wood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Adolf FP (1975) Über eine enzymatische Vorbehandlung von Nadelholz zur Verbesserung der Wegsamkeit. Holzforschung 29:181–186

    CAS  Google Scholar 

  • Adolf FP (1976) Untersuchungen zum Tränkverhalten von enzymatisch vorbehandeltem Nadelholz. Holz Roh Werkst 34:163–166

    Google Scholar 

  • Adolf FP, Gerstetter E, Liese W (1972) Untersuchungen über einige Eigenschaften von Fichtenholz nach dreijähriger Wasserlagerung. Holzforschung 26:18–25

    Google Scholar 

  • Ander P, Stoytschev I, Eriksson K-E (1988) Cleavage and metabolism of methoxyl groups from vanillic and ferulic acids by brown-rot and soft-rot fungi. Cellul Chem Technol 22:255–266

    CAS  Google Scholar 

  • Ander P, Mishra C, Farrell RL, Eriksson K-EL (1990) Redox reactions in lignin degradation: interaction between laccase, different peroxidases and cellobiose:quinine oxidoreductase. J Biotechnol 13:189–198

    CAS  Google Scholar 

  • Ayla C, Nimz HH (1984) Die Verwendung von Ablaugenlignin bei der Herstellung von Holzwerkstoffen. Holzforschung 42:415–419

    CAS  Google Scholar 

  • Back EL (1987) The bonding mechanism in hardboard manufacture. Holzforschung 41:247–258

    CAS  Google Scholar 

  • Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 5:147–157

    Google Scholar 

  • Bauch J, Liese W, Scholz F (1968) Über die Entwicklung und stoffliche Zusammensetzung der Hoftüpfelmembranen von Längstracheiden in Coniferen. Holzforschung 22:144–153

    Google Scholar 

  • Bauch J, Liese W, Berndt H (1970) Biological investigations for the improvement of the permeability of softwoods. Holzforschung 24:199–205

    Google Scholar 

  • Bauch J, Adolf P, Liese W (1973) Untersuchungen über die Tränkbarkeit von Fichtenholz. Holz Roh Werkst 31:115–120

    CAS  Google Scholar 

  • Bauch J, Schweers W, Berndt H (1974) Lignification during heartwood formation: comparative study of rays and bordered pit membranes in coniferous woods. Holzforschung 28:86–91

    Google Scholar 

  • Behrendt CJ, Blanchette RA (2001) Biological control of blue stain in pulpwood: mechanisms of control used by Phlebiopsis gigantea. Holzforschung 55:238–245

    CAS  Google Scholar 

  • Behrendt CJ, Blanchette RA, Farrell RL (1995) Biological control of blue-stain fungi in wood. Phytopathology 85:92–97

    Google Scholar 

  • Berka RM, Schneider P, Golightly EJ, Brown SH, Madden M, Brown KM, Halkier T, Mondorf K, Xu F (1997) Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of recombinant enzyme expressed in Aspergillus oryzae. Appl Environ Microbiol 63:3151–3157

    CAS  PubMed  Google Scholar 

  • Blanchette RA, Farrell RL, Burnes TA, Wendler PA, Zimmerman W, Brush TS, Snyder RA (1992a) Biological control of pitch in pulp and paper production by Ophiostoma piliferum. TAPPI J 75:102–106

    CAS  Google Scholar 

  • Blanchette RA, Wilmering AM, Baumeister M (1992b) The use of green-stained wood caused by the fungus Chlorociboria in intarsia masterpieces from the 15th century. Holzforschung 46:225–232

    CAS  Google Scholar 

  • Boudet AM, Lapierre C, Grima Pettenati J (1995) Tansley review no. 80: biochemistry and molecular biology of lignification. New Phytol 129:203–236

    CAS  Google Scholar 

  • Brisson A, Gharibian S, Eagen R, Leclerc DF, Breuil C (1996) Localization and characterization of the melanin granules produced by the sap-staining fungus Ophiostoma piceae. Mater Org 30:23–32

    CAS  Google Scholar 

  • Brown HL, Bruce A (1999) Assessment of the biocontrol potential of a Trichoderma viride isolate—part I: establishment of field and fungal cellar trials. Int Biodeterior Biodegrad 44:219–223

    Article  Google Scholar 

  • Brown HL, Bruce A, Staines HJ (1999) Assessment of the biocontrol potential of a Trichoderma isolate—part II: protection against soft rot and basidiomycete decay. Int Biodeterior Biodegrad 44:225–231

    Article  Google Scholar 

  • Bruce A, King B, Highley TL (1991) Decay resistance of wood removed from poles biologically treated with Trichoderma. Holzforschung 45:307–311

    Google Scholar 

  • Bruce A, Wheatley RE, Humphries SN, Hackett CA, Florence MEJ (2000) Production of volatile compounds by Trichoderma in media containing different amino acids and their effect on selected wood decay fungi. Holzforschung 54:481–486

    CAS  Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white-rot fungus. Science 228:1434–1436

    CAS  PubMed  Google Scholar 

  • Butler T, Alcalde N, Sieber V, Meinhold P, Schlachtbauer C, Arnold FH (2003) Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microbiol 69:987–995

    Article  PubMed  Google Scholar 

  • Canessa EA, Morrell JJ (1997) Biological control of wood decay fungi. I. Effect of exogenous carbon on effectiveness. Mater Org 31:167–182

    CAS  Google Scholar 

  • Cerniglia C (1992) Biodegradation of PAH. Biodegradation 3:351–368

    CAS  Google Scholar 

  • Clausen CA (1996) Bacterial associations with decaying wood: a review. Int Biodeterior Biodegrad 37:101–107

    Article  Google Scholar 

  • Clausen CA (1997) Enhanced removal of CCA from treated wood by Bacillus licheniformis in continuous culture. International Research Group on Wood Preservation (IRG/WP 97-55083), Stockholm

  • Clausen CA (2000a) Isolating metal-tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood. Waste Manage Res 18:264–268

    Article  CAS  Google Scholar 

  • Clausen CA (2000b) CCA removal from treated wood using a dual remediation process. Waste Manage Res 18:485–488

    Article  CAS  Google Scholar 

  • Clausen CA, Smith RL (1998a) CCA removal from treated wood by chemical, mechanical and microbial processing. International Research Group on Wood Preservation (IRG/WP 98-50101/27), Stockholm

  • Clausen CA, Smith RL (1998b) Removal of CCA from treated wood by oxalic acid extraction, steam explosion, and bacterial fermentation. J Ind Microbiol Biotechnol 20:251–257

    Article  CAS  Google Scholar 

  • Clausen CA, Kartal SN, Muehl J (2001) Particleboard made from remediated CCA-treated wood: evaluation of panel properties. For Prod J 51(7–8):61–64

    CAS  Google Scholar 

  • Collett O (1992) Comparative tolerance of the brown-rot fungus Antrodia vaillantii (DC.:Fr.) Ryv. isolates to copper. Holzforschung 46:293–298

    CAS  Google Scholar 

  • Conesa A, Jeenes D, Archer DB, Hondel CAMJJ van den, Punt PJ (2002) Calnexin overexpression increases manganese peroxidase production in Aspergillus. Appl Environ Microbiol 68:846–850

    Article  CAS  PubMed  Google Scholar 

  • Connick WJ, Osbrink WLA, Wright MS, Williams KS, Daigle DJ, Boykin DL, Lax AR (2001) Increased mortality of Coptotermes formosanus (Isoptera: Rhinotermitidae) exposed to eicosanoid biosynthetic inhibitors and Serratia marcescens (Eubacteriales: Enterobacteriaceae). Environ Entomol 30:449–445

    CAS  Google Scholar 

  • Crawford DM, Clausen CA (1999) Evaluation of wood treated with copper-based preservatives for Cu loss during exposure to heat and copper-tolerant Bacillus licheniformis. International Research Group on Wood Preservation (IRG/WP 99-20155), Stockholm

  • Crawford DM, De Groot RC, Watkins JB, Greaves H, Schmalzl KJ, Syers TL (2000) Treatability of US wood species with pigment-emulsified creosote. For Prod J 50(1):29–35

    CAS  Google Scholar 

  • Culliney TW, Grace JK (2000) Prospects for the biological control of subterranean termites (Isoptera: Rhinotermitidae), with special reference to Coptotermes formosanus. Bull Entomol Res 90:9–21

    CAS  PubMed  Google Scholar 

  • Da Costa EWB (1959) Abnormal resistance of Poria vaillantii (DC. Ex Fr.) Cke. strains to copper-chrome-arsenate wood preservatives. Nature 183:910–911

    Google Scholar 

  • Da Costa EWB, Kerruish RM (1964) Tolerance of Poria species to copper-based wood preservatives. For Prod J 14:106–112

    Google Scholar 

  • Da Costa EWB, Johanson R, Osborne LD (1969) Laboratory evaluations of wood preservatives III. Holzforschung 23:99–107

    Google Scholar 

  • De Groot R, Woodward B (1998) Wolfiporia cocos—a potential agent for composting or bioprocessing Douglas fir wood treated with copper-based preservatives. Mater Org 32:195–215

    Google Scholar 

  • De Groot R, Woodward B (1999) Using copper-tolerant fungi to biodegrade wood treated with copper-based preservatives. Int Biodeterior Biodegrad 44:17–27

    Article  Google Scholar 

  • Decker P, Cohen B, Butala JH, Gordon T (2002) Exposure to wood dust and heavy metals in workers using CCA pressure-treated wood. AIHA J 63:166–171

    Article  Google Scholar 

  • Deshpande V, Eriksson K-E, Pettersson B (1978) Production, purification and partial characterization of 1,4-β-glucosidases enzymes from Sporotrichum pulverulentum. Eur J Biochem 90:191–198

    CAS  PubMed  Google Scholar 

  • Dorado J, Claassen FW, Lenon G, Beck TA van, Wijnberg JBPA, Sierra-Alvarez R (2000) Degradation and detoxification of softwood extractives by sapstain fungi. Bioresour Technol 71:13–20

    Article  CAS  Google Scholar 

  • Drisko RW, O′Neill TB (1966) Microbiological metabolism of creosote. For Prod J 16(7):31–34

    Google Scholar 

  • Duncan CG, Deverall FJ (1964) Degradation of wood preservatives by fungi. Appl Microbiol 12:57–62

    CAS  Google Scholar 

  • Dunn C, Wolfaardt F, Wingfield MJ (2002) Pathogenicity of Ophistoma piliferum (Cartapip 97) compared with that of other South African sap-stain fungi. S Afr J Sci 98:401–403

    Google Scholar 

  • Eriksson K-E, Pettersson B (1975a) Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose. 1. Separation, purification and physicochemical characterization of five endo-1,4-β-glucanases. Eur J Biochem 51:193–206

    CAS  PubMed  Google Scholar 

  • Eriksson K-E, Pettersson B (1975b) Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose. 3. Purification and physico-chemical characterization of an exo-1,4-β-glucanase. Eur J Biochem 51:213–218

    CAS  PubMed  Google Scholar 

  • Eriksson K-EL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin Heidelberg New York

  • Evans CS (1991) Enzymes of lignin degradation. In: Betts WE (ed) Biodegradation: natural and synthetic compounds. Springer, Berlin Heidelberg New York, pp 175–184

  • Farrell RL, Blanchette RA, Brush TS, Hadar Y, Iverson S, Krisa K, Wendler PA, Zimmerman W (1993) Cartapip—a biopulping product for control of pitch and resin acid problems in pulp mills. J Biotechnol 30:115–122

    CAS  Google Scholar 

  • Felby C, Hassingboe J (1996) The influence of the chemical structure and physical state of native lignin upon the bonding strength of enzymatic bonded dry-process fiberboards. In: Kyoto University (ed) Third pacific rim bio-based composites symposium. Kyoto University, Kyoto, pp 283–291

  • Felby C, Nielsen BR, Olesen PO, Skibsted LH (1997a) Identification and quantification of radical reaction intermediates by electron spin resonance spectrometry of laccase-catalyzed oxidation of wood fibers from beech (Fagus sylvatica). Appl Microbiol Biotechnol 48:459–464

    Article  CAS  Google Scholar 

  • Felby C, Pedersen LS, Nielsen BR (1997b) Enhanced auto-adhesion of wood fibers using phenol oxidases. Holzforschung 51:281–286

    CAS  Google Scholar 

  • Felby C, Olesen PO, Hansen TT (1998) Laccase catalyzed bonding of wood fibers. In: Eriksson K-EL, Cavaco-Paulo A (eds) Enzyme applications in fiber processing. (ACS symposium series 687) American Chemical Society, Washington, D.C., pp 88–98

  • Felby C, Hassingboe J, Lund M (2002) Pilot-scale production of fiberboards made by laccase oxidized wood fibers: board properties and evidence for cross-linking of lignin. Enzyme Microb Technol 31:736–741

    Article  CAS  Google Scholar 

  • Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. de Gruyter, Berlin

  • Fenning TM, Gershenzon J (2002) Where will the wood come from? Plantation forests and the role of biotechnology. Trends Biotechnol 20:291–296

    Article  CAS  PubMed  Google Scholar 

  • Fleet C, Breuil C, Uzunovic A (2001) Nutrient composition and pigmentation of deep and surface colonizing sapstaining fungi in Pinus contorta. Holzforschung 55:340–346

    CAS  Google Scholar 

  • Freudenberg K, Neish AC (1968) Constitution and biosynthesis of lignin. Springer, Berlin Heidelberg New York

  • Gadd GM (1993) Interaction of fungi with toxic metals. New Phytol 124:25–60

    CAS  Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microbiol Physiol 41:47–92

    CAS  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279

    CAS  PubMed  Google Scholar 

  • Gadd GM, Sayer JA (2000) Influence of fungi on the environmental mobility of metals and metalloids. In: Lovley DR (ed) Environmental microbe–metal interactions. American Society for Microbiology, Washington, D.C., pp 237–256

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    Article  CAS  PubMed  Google Scholar 

  • Golinski P, Krick TP, Blanchette RA, Mirocha CJ (1995) Chemical characterization of a red pigment (5,8-dihydroxy-2,7-dimethoxy-1,4-naphthalenedione) produced by Arthrographis cuboida in pink stained wood. Holzforschung 49:407–410

    CAS  Google Scholar 

  • Grace JK (2003) Approaches to biological control of termites. Sociobiology 41:115–121

    Google Scholar 

  • Graf E (1990) Biologischer und biotechnischer Holzschutz—Literaturreview. (Interner Bericht 120,500) EMPA, St Gallen

  • Graf E (2001) Biologische und biotechnologische Verfahren gegen holzbewohnende Pilze—eine Übersicht. Holz Roh Werkst 59:356–362

    Article  CAS  Google Scholar 

  • Greaves H (1970) The effect of some wood inhabiting bacteria on the permeability characteristics and microscopic features of Eucalyptus regnans sapwood and Pinus radiata sapwood and heartwood. Holzforschung 24:6–17

    Google Scholar 

  • Green F, Highley TL (1997) Mechanism of brown-rot decay: paradigm or paradox. Int Biodeterior Biodegrad 39:113–124

    Article  CAS  Google Scholar 

  • Gutierrez A, Rio JC del, Martinez MJ, Martinez AT (2001) The biotechnological control of pitch in paper pulp manufacturing. Trends Biotechnol 19:340–348

    PubMed  Google Scholar 

  • Haars A, Trojanowski J, Hüttermann A (1987) Lignin bioconversion and its technical application In: Wise DL (ed) Bioenvironmental systems, vol I. CRC, Boca Raton, Fla., pp 89–129

    Google Scholar 

  • Haars A, Kharazipour A, Zanker H, Hüttermann A (1989) Room-temperature curing adhesives based on lignin and phenoloxidases. In: Hemingway RW, Conner AH, Branham SJ (eds) Adhesives from renewable resources. (ACS symposium series 385) American Chemical Society, Washington, D.C., pp 126–134

  • Henriksson G, Ander P, Pettersson B, Pettersson G (1995) Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood-degrading enzyme. Studies on cellulose, xylan and synthetic lignin. Appl Microbiol Biotechnol 42:790–796

    Article  CAS  Google Scholar 

  • Henriksson G, Johansson G, Pettersson G (2000) A critical review of cellobiose dehydrogenases. J Biotechnol 78:93–113

    Article  CAS  PubMed  Google Scholar 

  • Highley TL, Dashek WV (1998) Biotechnology in the study of brown- and white-rot decay. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor and Francis, London, pp 15–36

  • Hingston JA, Moore J, Bacon A, Lester JN, Murphy RJ, Collins CD (2002) The importance of the short-term leaching dynamics of wood preservatives. Chemosphere 47:517–523

    Article  CAS  PubMed  Google Scholar 

  • Humphrey DG (2002) The chemistry of chromated copper arsenate wood preservatives. Rev Inorg Chem 22:1–40

    CAS  Google Scholar 

  • Humphries SN, Bruce A, Wheatley RE (2001) The effect of specific volatile organic compounds produced by Trichoderma spp on the growth of wood decay basidiomycetes. Holzforschung 55:233–237

    Google Scholar 

  • Humphries SN, Bruce A, Wheatley RE (2002) The effect of Trichoderma volatiles on protein synthesis in Serpula lacrymans. FEMS Microbiol Lett 210:215–219

    Article  PubMed  Google Scholar 

  • Hüttermann A, Kharazipour A (1996) Enzymes as polymerization catalysts. In: Maijanen A, Hase A (eds) New catalysts for a clean environment. (VTT symposium 163) Technical Research Centre of Finland (VTT), Espoo, pp 143–148

  • Hüttermann A, Haars A, Trojanowski J, Milstein O, Kharazipour A (1989a) Enzymatic modification of lignin for its technical use—strategies and results. In: Glasser WG, Sarkanen S (eds) New polymeric materials from lignin. (ACS symposium series 397) American Chemical Society, Washington, D.C., pp 361–371

  • Hüttermann A, Milstein O, Nicklas B, Trojanowski J, Haars A, Kharazipour A (1989b) Methods for the evaluation of lignin properties suitable for conversion. In: Chesson A, Orskov ER (eds) Physico-chemical characterisation of plant residues for industrial and feed. Elsevier, London, pp 147–157

  • Hüttermann A, Mai C, Kharazipour A (2001) Modification of lignin for the production of new compounded materials. Appl Microbiol Biotechnol 55:387–394

    Article  PubMed  Google Scholar 

  • Illman BL, Highley TL (1996) Fungal degradation of wood treated with metal-based preservatives. Part 1: fungal tolerance. International Research Group on Wood Preservation (IRG/WP 96-10163), Stockholm

    Google Scholar 

  • Illman BL, Bajt S, Highley TL (1996) Fungal degradation of wood treated with metal-based preservatives. Part 2: redox states of chromium. International Research Group on Wood Preservation (IRG/WP 96-10164), Stockholm

  • Illman BL, Yang VW, Ferge L (2000) Bioprocessing preservative-treated waste wood. International Research Group on Wood Preservation (IRG/WP 00-50145), Stockholm

  • Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403

    CAS  PubMed  Google Scholar 

  • Jellison J, Conolly J, Goodell B, Doyle B, Illman B, Fekete F, Ostrofsky A (1997) The role of cations in the biodegradation of wood by the brown rot fungi. Int Biodeterior Biodegrad 39:165–179

    Article  CAS  Google Scholar 

  • Jin L, Schultz TP, Nicholas DD (1990a) Structural characterization of brown-rotted lignin. Holzforschung 44:133–138

    Google Scholar 

  • Jin L, Sellers T, Schultz TP, Nicholas DD (1990b) Utilization of lignin modified by brown-rot fungi. Holzforschung 44:207–210

    CAS  Google Scholar 

  • Jin L, Nicholas DD, Schultz TP (1991) Wood laminates glued by enzymatic oxidation of brown-rotted lignin. Holzforschung 45:467–468

    CAS  Google Scholar 

  • Johnson BR, Giovik LR (1970) Effect of Trichoderma viride and a contaminating bacterium on microstructure and permeability of loblolly pine and Douglas fir. Am Wood Preserv Assoc 66:234–242

    Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88

    Article  CAS  Google Scholar 

  • Kartal SN, Clausen CA (2001) Leachability and decay resistance of particleboard made from acid extracted and bioremediated CCA-treated wood. Int Biodeterior Biodegrad 47:183–191

    Article  CAS  Google Scholar 

  • Kerner-Gang W (1975) Einwirken von Mikroorganismen auf Steinkohleteeröl. Org Holz 3:319–330

    Google Scholar 

  • Keyser P, Kirk TK, Zeikus JG (1978) Ligninolytic enzyme system of Phanerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. J Bacteriol 135:790–797

    CAS  PubMed  Google Scholar 

  • Kharazipour A, Hüttermann A (1998) Biotechnological production of wood composites. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor and Francis, London, pp 141–150

  • Kharazipour A, Hüttermann A, Lüdemann HD (1997) Enzymatic activation of wood fibres as a means for the production of wood composites. J Adhes Sci Technol 11:419–427

    Google Scholar 

  • Kharazipour A, Bergmann K, Nonninger K, Hüttermann A (1998a) Properties of fibre boards obtained by activation of the middle lamella lignin of wood fibres with peroxidase and H2O2 before conventional pressing. J Adhesion Sci Technol 12:1045–1053

    CAS  Google Scholar 

  • Kharazipour A, Mai C, Hüttermann A (1998b) Polyphenols for compounded materials. Polym Degrad Stab 59:237–243

    Article  CAS  Google Scholar 

  • Kirk TK (1975) Effect of a brown-rot fungus, Lenzites trabea, on lignin in spruce wood. Holzforschung 29:99–107

    CAS  Google Scholar 

  • Kirk TK, Highley TL (1973) Quantitative changes in structural components of conifer woods during decay by white- and brown-rot fungi. Phytopathology 55:739–745

    Google Scholar 

  • Kirk TK, Shimada M (1985) Lignin biodegradation: the organisms involved in the physiology and biochemistry of degradation by white-rot fungi. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press, Orlando, Fla., pp 579–605

  • Koenigs JW (1974) Hydrogen peroxide and iron: a proposed system for decomposition of wood by brown-rot basidiomycetes. Wood Fiber 6:66–80

    Google Scholar 

  • Körner I, Kühne G, Pecina H (2001) Unsterile Fermentation von Hackschnitzeln—eine Holzbehandlungsmethode für die Faserplattenherstellung. Holz Roh Werkst 59:334–341

    Article  Google Scholar 

  • Kortekaas S, Sierra-Alvarez R (1996) Fungal bioleaching of metals in preservative-treated wood. In: Srebotnik E, Messner K (eds) Biotechnology in the pulp and paper industry. Facultas Universitätsverlag, Vienna, pp 599–601

  • Kües U, Liu Y (2000) Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol 54:141–152

    PubMed  Google Scholar 

  • Kühne G, Dittler B (1999) Enzymatische Modifizierung nachwachsender Rohstoffe für die Herstellung bindemittelfreier Faserwerkstoffe. Holz Roh Werkst 57:264

    Article  Google Scholar 

  • Kumar S Morrell JJ (1993) Effect of fatty acid removal on treatability of Douglas-fir. International Research Group on Wood Preservation. (IRG WP 92-1531), Stockholm

  • Lamar RT (1995) Use of wood-decay fungi for disposal of PCP-treated wood. International Research Group on Wood Preservation (IRG/WP 95-50040/33), Stockholm

  • Lamar RT, Dietrich DM (1992) Use of lignin-degrading fungi in the disposal of pentachlorophenol-treated wood. J Ind Microbiol 9:181–191

    CAS  Google Scholar 

  • Le Bayon I, Ansard D, Brunet C, Girardi S, Paulmier I (2000) Biocontrol of Reticulitermes santonensis by entomopathogenic fungi—improvement of the contamination process. International Research Group on Wood Preservation (IRG/WP 00-10359), Stockholm

  • Lee D-H, Takahashi M, Tsunoda K (1992a) Fungal detoxification of organoiodine wood preservatives. Part 1. Holzforschung 46:81–86

    CAS  Google Scholar 

  • Lee D-H, Takahashi M, Tsunoda K (1992b) Fungal detoxification of organoiodine wood preservatives. Part 2. Holzforschung 46:467–469

    CAS  Google Scholar 

  • Lee S, Kim SH, Breuil C (2002) The use of the green fluorescent protein as a biomarker for sapstain fungi. For Pathol 32:153–161

    CAS  Google Scholar 

  • Legay S, Marchal P, Labat G (1998) Alternative technologies for wood wastes recycling—part B: biotreatment of PCP- and creosote-treated wood. International Research Group on Wood Preservation (IRG/WP 98-50101/19b), Stockholm

  • Leithoff HB, Peek R-D (1997) Experience with an industrial scale-up for the biological purification of CCA-treated wood waste. International Research Group on Wood Preservation (IRG/WP 97-50095), Stockholm

  • Leithoff HB, Peek R-D (1998) Biological detoxification processes—a check list for assessments. International Research Group on Wood Preservation (IRG/WP 98-50120), Stockholm

  • Leithoff HB, Stephan I, Lenz MT, Peek R-D (1995) Growth of copper tolerant brown rot fungus Antrodia vaillantii on different substrates. International Research Group on Wood Preservation (IRG/WP 95-10121), Stockholm

  • Litchfield CD, Rao M (1998) Pentachlorophenol biodegradation: laboratory and field studies. In: Lewandowski GA, DeFilippi LJ (eds) Biological treatment of hazardous wastes. Wiley, New York, pp 271–302

  • Luthardt W (1963) Myko-Holz-Herstellung, Eigenschaften und Verwendung. In: Lyr H, Gillwald W (eds) Holzzerstörung durch Pilze. Akademie-Verlag, Berlin, pp 83–88

  • Mai C, Schormann W, Hüttermann A (2001) Chemo-enzymatically induced copolymerization of phenolics with acrylate compounds. Appl Microbiol Biotechnol 55:177–186

    Article  CAS  PubMed  Google Scholar 

  • Majcherczyk A, Hüttermann A (1998) Bioremediation of wood treated with preservatives using white-rot fungi. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor and Francis, London, pp 129–140

  • Maloney TM (1993) Modern particleboard and dry-process fiberboard manufacturing. Miller Freeman, San Francisco

  • Manczinger L, Molńar A, Kredics L, Antal Z (2002) Production of bacteriolytic enzymes by mycoparasitic Trichoderma strains. World J Microbiol Biotechnol 18:147–150

    Article  CAS  Google Scholar 

  • Martinez-Inigo MJ, Immerzeel P, Gutierrez A, Rio JC del, Sierra-Alvarez R (1999) Biodegradability of extractives in sapwood and heartwood from Scots pine by sapstain and white rot fungi. Holzforschung 53:247–252

    CAS  Google Scholar 

  • McBain A, Cui F, Herbert L, Ruddick JN (1995) The microbial degradation of chlorophenolic preservatives in spent, pressure-treated timber. Biodegradation 6:47–55

    CAS  Google Scholar 

  • McLean J, Beveridge TJ (2001) Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084

    CAS  PubMed  Google Scholar 

  • Messner K (1998) Biopulping. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor and Francis, London, pp 63–82

  • Messner K, Böhmer S (1998) Evaluation of fungal remediation of creosote treated wood. International Research Group on Wood Preservation (IRG/WP 98-50101/26), Stockholm

  • Messner K, Fackler K, Srebotnik E, Hinterstoisser B, Steinwender M (2002) Biotechnological wood modification. In: Vienna University (ed) Proceedings of the international symposium on wood based materials, part 2. Vienna University, Vienna, pp 45–59

  • Meyer RW (1974) Effect of enzyme treatment on bordered-pit ultrastructure, permeability, and toughness of the sapwood of three western conifers. Wood Sci 6:220–230

    Google Scholar 

  • Militz H (1993a) The enzymatic decomposition of neutral and acid polysaccharides from spruce wood. Wood Sci Technol 28:9–22

    CAS  Google Scholar 

  • Militz H (1993b) Der Einfluß enzymatischer Behandlungen auf die Tränkbarkeit kleiner Fichtenproben. Holz Roh Werkst 51:135–142

    Google Scholar 

  • Militz H, Homan WJ (1993) Vorbehandlung von Fichtenholz mit Chemikalien mit dem Ziel der Verbesserung der Imprägnierbarkeit. Holz Roh Werkst 51:14–20

    CAS  Google Scholar 

  • Milner RJ (2003) Application of biological control agents in mound building termites (Isoptera: Termitidae)—experiences with Metarhizium in Australia. Sociobiology 41:419–428

    Google Scholar 

  • Morishita S, Ohkoshi M, Nakato K, Sadoh T (1986) Destroying obstacles in the fluid flow through softwood with pectolytic enzymes. Mokuzai Gakkaishi 32:401–408

    CAS  Google Scholar 

  • Morrell JJ, Morris PI (2002) Methods for improving preservative penetration into wood: a review. International Research Group on Wood Preservation (IRG/WP 02-40227), Stockholm

    Google Scholar 

  • Myles TG (2002) Alarm, aggregation, and defense by Reticulitermes flavipes in response to a naturally occurring isolate of Metarhizium anisopliae. Sociobiology 40:243–255

    Google Scholar 

  • Nicholas DD, Thomas RJ (1968) Influence of steaming on ultrastructure of bordered pit membrane in loblolly pine. For Prod J 18(1):57–59

    Google Scholar 

  • Nimz H (1974) Das Lignin der Buche—Entwurf eines Konstruktionsschemas. Angew Chem 9:336–344

    Google Scholar 

  • Nimz H (1983) Lignin-based wood adhesives. In: Pizzi A (ed) Wood adhesion chemistry and technology. Dekker, New York, pp 247–288

  • Nimz H, Razvi A, Marquharab I, Clad D (1972) Bindemittel bzw Klebemittel zur Herstellung von Holzwerkstoffen sowie zur Verklebung von Werkstoffen verschiedener Art. German patent DOS 2221353

  • Nimz H, Gurang I, Mogharab I (1976) Untersuchung zur Vernetzung technischer Sulfitablauge. Liebigs Ann Chem 1976:1421–1434

    Google Scholar 

  • Ohkoshi M, Tokuda M, Sadoh T (1987) Increase of permeability of Sugi by degrading bordered pit membranes with enzymes. Mokuzai Gakkaishi 33:347–353

    CAS  Google Scholar 

  • Orth AB, Tien M (1995) Biotechnology of lignin degradation. In: Kück U (ed) The Mycota. II. Genetics and biotechnology. Springer, Berlin Heidelberg New York, pp 287–302

  • Palfreyman JW, White NA, Buultjens TEJ, Glancy H (1995) The impact of current research on the treatment by the dry rot fungus Serpula lacrymans. Int Biodeterior Biodegrad 35:369–395

    Article  Google Scholar 

  • Palfreyman JW, Smith D, Low GA (2001) The use of representative modelling to test the efficacy of environmental control treatments for the dry rot fungus Serpula lacrymans: simulating the infection and the treatment of floor timber. Int Biodeterior Biodegrad 47:27–36

    Article  CAS  Google Scholar 

  • Parker BJ, Veness RG, Evans CS (1999) A biochemical mechanism whereby Paecilomyces variotii can overcome the toxicity of the wood protectant, borate. Enzyme Microb Technol 24:402–406

    Article  CAS  Google Scholar 

  • Payne C, Bruce A (2001) The yeast Debaryomyces hansenii as a short-term biological control agent against fungal spoilage of sawn Pinus sylvestris timber. Biol Control 22:22–28

    Article  Google Scholar 

  • Payne C, Bruce A, Staines H (2000) Yeast and bacteria as biological control agents against fungal discoloration of Pinus sylvestris blocks in laboratory-based tests and the role of antifungal volatiles. Holzforschung 54:563–569

    CAS  Google Scholar 

  • Peek R-D, Stephan I, Leithoff HB (1993) Microbial decomposition of salt treated wood. International Research Group on Wood Preservation (IRG/WP 93-50001/22), Stockholm

  • Pena L, Seguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19:500–506

    PubMed  Google Scholar 

  • Peylo A, Willeitner H (2001) Assessment of borates as wood preservatives. Holz Roh Werkst 58:476–482

    Article  CAS  Google Scholar 

  • Rath AC (2000) The use of entomopathogenic fungi for control of termites. Biocontrol Sci Technol 10:563–581

    Article  Google Scholar 

  • Ratto M, Chatani M, Ritschkoff AC, Viikari L (2001) Screening of micro-organisms for decolorization of melanins produced by bluestain fungi. Appl Microbiol Biotechnol 55:210–213

    Article  CAS  PubMed  Google Scholar 

  • Record E, Punt PJ, Chamkha M, Labat M, Hondel CAMJJ van den, Asther M (2002) Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. Eur J Biochem 269:602–609

    Article  CAS  PubMed  Google Scholar 

  • Ribichich KF, Lopez SE (1996) Fungal decay in creosote-treated Eucalyptus power transmission poles. Mater Org 30:63–72

    Google Scholar 

  • Roffael E, Rauch W (1971) Über die Herstellung von Holzspanplatten auf Basis von Sulfitablauge. Holzforschung 25:112–116

    CAS  Google Scholar 

  • Rosner B, Messner K, Tucker E, Bruce A (1998) Improved preservative penetration of spruce after pre-treatment with selected fungi. I: fungal pre-treatment of pole sections. International Research Group on Wood Preservation (IRG/WP 98-40117), Stockholm

  • Saikawa Y, Watanabe T, Hashimoto K, Nakata M (2000) Absolute configuration and tautomeric structure of xylindein, a blue-green pigment of Chlorociboria species. Phytochemistry 55:237–240

    Article  CAS  Google Scholar 

  • Sandhu SS, Unkles SE, Rajak RC, Kinghorn JR (2001) Generation of benomyl resistant Beauveria bassiana strains and their infectivity against Helicoverpa armigera. Biocontrol Sci Technol 11:245–250

    Article  Google Scholar 

  • Schmidt O (1994) Holz- und Baumpilze. Springer, Berlin Heidelberg New York

  • Schroeder S, Kim SH, Lee S, Sterflinger K, Breuil C (2002) The β-tubulin gene is a useful target for PCR-based detection of an albino Ophiostoma piliferum used in biological control of sapstain. Eur J Plant Pathol 108:793–801

    Article  CAS  Google Scholar 

  • Score AJ, Bruce A, King B, Palfreyman JW (1998) The biological control of Serpula lacrymans by Trichoderma species. Holzforschung 52:124–132

    CAS  Google Scholar 

  • Shen KC (1974) Modified powdered spent sulphite liquor as binder for exterior waferboard. For Prod J 24:38–44

    CAS  Google Scholar 

  • Silver S (1996) Bacterial resistances to toxic metal ions—a review. Gene 179:9–19

    CAS  PubMed  Google Scholar 

  • Singh J (1999) Dry rot and other wood-destroying fungi: their occurrence, biology, pathology and control. Indoor Built Environ 8:3–20

    Article  Google Scholar 

  • Smouse J, Foster D, Freitag C, Morrell JJ (1999) Ability of selected Trichoderma spp to inhibit microbial discoloration of Ponderosa pine sapwood. Mater Org 33:107–118

    Google Scholar 

  • Soden DM, O′Callaghan J, Dobsen ADW (2002) Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host. Microbiology 148:4003–4014

    CAS  PubMed  Google Scholar 

  • Spiridon I, Popa VI (2000) Application of microorganisms and enzymes in the pulp and paper industry. Cell Chem Technol 34:275–285

    CAS  Google Scholar 

  • St. Leger RJ, Joshi L, Bidochka MJ, Roberts DW (1996) Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Natl Acad Sci USA 93:6349–6354

    Article  PubMed  Google Scholar 

  • Staples JA, Milner RJ (2000) A laboratory evaluation of the repellency of Metarhizium anisopliae conidia to Coptotermes lacteus (Isoptera: Rhinotermitidae). Sociobiology 36:133–148

    Google Scholar 

  • Stephan I, Peek R-D (1992) Biological detoxification of wood treated with salt preservatives. International Research Group on Wood Preservation (IRG/WP 92-3717), Watford

  • Stephan I, Leithoff HB, Peek R-D (1996) Microbial conversion of wood treated with salt preservatives. Mater Org 30:179–199

    CAS  Google Scholar 

  • Stranks DW, Hulme MA (1975) The mechanism of biodegradation of wood preservatives. Org Holz 3:345–353

    Google Scholar 

  • Suolahti O, Wallen A (1958) Der Einfluss der Nasslagerung auf das Wasseraufnahmevermögen des Kiefernsplintholzes. Holz Roh Werkst 16:8–17

    CAS  Google Scholar 

  • Tracy A (2002) Unique blue wood died of natural causes. J Commer (28 January)

  • Tschernitz JL (1973) Enzyme mixture improves creosote treatment of kiln-dried Rocky mountain Douglas-fir. For Prod J 23(3):30–38

    CAS  Google Scholar 

  • Tucker E, Bruce A, Staines HJ, Rosner B, Messner K (1998) Improved preservative penetration of spruce after pre-treatment with selected fungi. II: creosote treatment, analysis, strength testing. International Research Group on Wood Preservation (IRG/WP 98-40106), Stockholm

  • Unbehaun H, Wolff M, Kühne G, Schindel K, Hüttermann A, Cohen R, Chet I (1999) Mechanismen der mykologischen Transformation von Holz für die Holzwerkstoffherstellung. Holz Roh Werkst 57:92

    CAS  Google Scholar 

  • Unbehaun H, Dittler B, Kühne G, Wagenführ A (2000) Investigation into the biotechnological modification of wood and its application in the wood-based material industry. Acta Biotechnol 20:305–312

    CAS  Google Scholar 

  • Unligil HH (1968) Depletion of pentachlorophenol by fungi. For Prod J 18(2):45–50

    CAS  Google Scholar 

  • Valadares-Inglis MC, Inglis PW (1997) Transformation of the entomopathogenic fungus, Metarhizium flavoriode strain CG423 to benomyl resistance. FEMS Microbiol Lett 155:199–202

    Article  CAS  Google Scholar 

  • Vanneste JL, Hill RA, Kay SJ, Farrell RL, Holland PT (2002) Biological control of sapstain fungi with natural products and biological control agents: a review of the work carried out in New Zealand. Mycol Res 106:228–232

    Article  CAS  Google Scholar 

  • Volz KR (1995) Holz—Rohstoff der Zukunft. Holz-Zentralbl 121:2459–2462

  • Wang C, Powell JE (2003) Isolation and evaluation of Beauveria bassiana for control of Coptotermes formosanus and Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 41:369–381

    Google Scholar 

  • Wang Z, Leone R, Breuil C (1997) Why fungal growth is less effective in aspen heartwood than in aspen sapwood. Mater Org 31:145–155

    Google Scholar 

  • Weißenfels WD, Beyer M, Klein J (1990) Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Appl Microbiol Biotechnol 32:479–484

    CAS  PubMed  Google Scholar 

  • Westermark U, Eriksson K-E (1974) Cellobiose:quinine oxidoreductase, a new wood degrading enzyme from white-rot fungi. Acta Chem Scand B 28:209–214

    CAS  Google Scholar 

  • Westermark U, Eriksson K-E (1975) Purification and properties of cellobiose:quinine oxidoreductase from Sporotrichum pulverulentum. Acta Chem Scand B 29:419–424

    CAS  PubMed  Google Scholar 

  • Westlund A, Nohrstedt HO (2000) Effects of stump-treatment substances for root-rot control on ground vegetation and soil properties in a Picea abies forest in Sweden. Scand J For Res 15:550–560

    Article  Google Scholar 

  • White-McDougall WJ, Blanchette RA, Farrell RL (1998) Biological control of blue stain fungi on Populus tremuloides using selected Ophiostoma isolates. Holzforschung 52:234–240

    CAS  Google Scholar 

  • Woods WG (1994) An introduction to boron history, sources, uses, and chemistry. Environ Health Perspect 102[Suppl]:5–11

  • Woodward B, De Groot R (1999) Tolerance of Wolfiporia cocos isolates to copper in agar media. For Prod J 49(4):87–94

    Google Scholar 

  • Wright MS, Osbrink WLA, Lax AR (2002) Transfer of entomopathogenic fungi among Formosan subterranean termites and subsequent mortality. J Appl Entomol 126:20–23

    Article  Google Scholar 

  • Yamaguchi H, Nagamori N, Sakata I (1991) Application of the dehydrogenative polymerization of vanillic acid to bonding of woody fibers. Mokuzai Gakkaishi 37:220–226

    CAS  Google Scholar 

  • Yamaguchi H, Maeda Y, Sakata I (1992) Application of phenol dehydrogenative polymerization by laccase to bonding among woody fibers. Mokuzai Gakkaishi 38:931–937

    CAS  Google Scholar 

  • Yamaguchi H, Maeda Y, Sakata I (1994) Bonding among woody fibers by use of enzymatic phenol dehydrogenative polymerization. Mokuzai Gakkaishi 40:185–190

    CAS  Google Scholar 

  • Yang DQ, Rossignol L (1999) Evaluation of Gliocladium roseum against wood-degrading fungi in vitro and on major Canadian wood species. Biocontrol Sci Technol 9:409–420

    Article  Google Scholar 

  • Yoshimoto T, Hayashi S, Kishima T (1972) Artificial modification of bordered pits in softwoods. Wood Res 52:90–105

    Google Scholar 

Download references

Acknowledgements

We thank P.D. Evans and A. Wagenführ for providing information and helpful discussion. The laboratory of U.K. is financially supported by the Deutsche Bundesstiftung Umwelt (DBU). The authors are members of the Niedersächsisches Kompetenznetz für Nachhaltige Holznutzung (NHN; the Lower Saxony competence network for sustainable wood utilisation). NHN is supported by the European Regional Development Fund (EFRE project 2001.085) and by the Ministry for Science and Culture of Lower Saxony.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mai, C., Kües, U. & Militz, H. Biotechnology in the wood industry. Appl Microbiol Biotechnol 63, 477–494 (2004). https://doi.org/10.1007/s00253-003-1411-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1411-7

Keywords

Navigation