Applied Microbiology and Biotechnology

, Volume 63, Issue 5, pp 578–583

Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae

Original Paper


Two xylose-fermenting glucose-derepressed Saccharomyces cerevisiae strains were constructed in order to investigate the influence of carbon catabolite repression on xylose metabolism. S. cerevisiae CPB.CR2 (Δmig1, XYL1, XYL2, XKS1) and CPB.MBH2 (Δmig1, Δmig2, XYL1, XYL2, XKS1) were analysed for changes in xylose consumption rate and ethanol production rate during anaerobic batch and chemostat cultivations on a mixture of 20 g l−1 glucose and 50 g l−1 xylose, and their characteristics were compared to the parental strain S. cerevisiae TMB3001 (XYL1, XYL2, XKS1). Improvement of xylose utilisation was limited during batch cultivations for the constructed strains compared to the parental strain. However, a 25% and 12% increased xylose consumption rate during chemostat cultivation was achieved for CPB.CR2 and CPB.MBH2, respectively. Furthermore, during chemostat cultivations of CPB.CR2, where the cells are assumed to grow under non-repressive conditions as they sense almost no glucose, invertase activity was lower during growth on xylose and glucose than on glucose only. The 3-fold reduction in invertase activity could only be attributed to the presence of xylose, suggesting that xylose is a repressive sugar for S. cerevisiae.


  1. Christensen LH, Schulze U, Nielsen J, Villadsen J (1995) Acoustic gas analysis for fast and precise monitoring of bioreactors. Chem Eng Sci 50:2601–2610Google Scholar
  2. Diderich JA, Schepper M, Van Hoek P, Luttik MA, van Dijken JP, Pronk JT, Klaassen P, Boelens HF, De Mattos MJ, van Dam K, Kruckeberg AL (1999) Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 274:15350–15359PubMedGoogle Scholar
  3. Dynesen J, Smits HP, Olsson L, Nielsen J (1998) Carbon catabolite repression of invertase during batch cultivations of Saccharomyces cerevisiae: the role of glucose, fructose, and mannose. Appl Microbiol Biotechnol 50:579–582CrossRefPubMedGoogle Scholar
  4. Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386PubMedGoogle Scholar
  5. Gancedo JM (1992) Carbon catabolite repression in yeast. Eur J Biochem 206:297–313PubMedGoogle Scholar
  6. Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361PubMedGoogle Scholar
  7. Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425PubMedGoogle Scholar
  8. Güldener U, Heck S, Fiedler T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524PubMedGoogle Scholar
  9. Hamacher T, Becker J, Gárdonyi M, Hahn-Hägerdal B, Boles E (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilisation. Microbiology 148:2783–2788PubMedGoogle Scholar
  10. Hernández-Montalvo V, Valle F, Bolivar F, Gosset G (2001) Characterization of sugar mixtures utilisation by an Escherichia coli mutant devoid of the phosphotransferase system. Appl Microbiol Biotechnol 57:186–191CrossRefPubMedGoogle Scholar
  11. Herwig C, Doerris C, Marison I, von Stockar U (2001) Quantitative analysis of the regulation scheme of invertase expression in Saccharomyces cerevisiae. Biotechnol Bioeng 76:247–258CrossRefPubMedGoogle Scholar
  12. Klein CJL, Olsson L, Nielsen J (1998) Glucose control in Saccharomyces cerevisiae: the role of MIG1 in metabolic functions. Microbiology 144:13–24PubMedGoogle Scholar
  13. Klein CJL, Rasmussen JJ, Rønnow B, Olsson L, Nielsen J (1999) Investigation of the impact of MIG1 and MIG2 on the physiology of Saccharomyces cerevisiae. J Biotechnol 68:197–212CrossRefPubMedGoogle Scholar
  14. Kötter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783Google Scholar
  15. Kotyk A (1967) Properties of the sugar carrier in baker's yeast. Folia Microbiol 12:121–131Google Scholar
  16. Kruckeberg AL, Bisson LF (1990) The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity transport. Mol Cell Biol 10:5903–5913PubMedGoogle Scholar
  17. Lundin M, Nehlin JO, Ronne H (1994). Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol Cell Biol 14:1979–1985PubMedGoogle Scholar
  18. Lutfiyya LL, Johnston M (1996) Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression. Mol Cell Biol 16:4790–4797PubMedGoogle Scholar
  19. Nehlin JO, Ronne H (1990) Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins. EMBO J 9:2891–2898PubMedGoogle Scholar
  20. Nichols NN, Dien BS, Bothast RJ (2001) Use of catabolite repression mutants for fermentation of sugars mixtures to ethanol. Appl Microbiol Biotechnol 56:120–125CrossRefPubMedGoogle Scholar
  21. Østergaard S, Olsson L, Johnston M, Nielsen J (2000) Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat Biotechnol 18:1283–1286CrossRefPubMedGoogle Scholar
  22. Özcan S, Vallier LG, Flick JS, Carlson M, Johnston M (1997) Expression of SUC2 gene of Saccharomyces cerevisiae is induced by low level of glucose. Yeast 13:127–137CrossRefPubMedGoogle Scholar
  23. Reifenberger E, Boles E, Ciriacy M (1997) Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 245:324–333PubMedGoogle Scholar
  24. Richard P, Toivari MH, Penttilä M (1999) Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase. FEBS Lett 457:135–138CrossRefPubMedGoogle Scholar
  25. Rizzi M, Erlemann P, Bui-Thanh N-A, Dellweg H (1988) Xylose fermentation by yeasts. 4. Purification and kinetic studies of xylose reductase from Pichia stipitis. Appl Microbiol Biotechnol 29:148–154Google Scholar
  26. Roca C, Olsson L (2003) Increasing ethanol productivity during xylose fermentation by cell recycling of recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 60:560–563PubMedGoogle Scholar
  27. Theodoris G, Fong NM, Coons DM, Bisson L (1994) High-copy suppression of glucose transport defects by HXT4 and regulatory elements in the promoters of the HXT genes in Saccharomyces cerevisiae. Genetics 137:957–966PubMedGoogle Scholar
  28. Trumbly RJ (1992) Glucose repression in the yeast Saccharomyces cerevisiae. Mol Microbiol 6:15–21PubMedGoogle Scholar
  29. Verduyn C, Postma E, Scheffers WA, van Dijken JP (1990) Physiology of Saccharomyces cerevisiae in anaerobic glucose- limited chemostat cultures. J Gen Microbiol 136:395–403PubMedGoogle Scholar
  30. Winde JH de, Grivell LA (1993) Global regulation of mitochondrial biogenesis in Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol 46:51–91PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Centre for Process Biotechnology, BioCentrum-DTUTechnical University of DenmarkLyngbyDenmark

Personalised recommendations