Applied Microbiology and Biotechnology

, Volume 64, Issue 1, pp 125–131 | Cite as

Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates

  • M. J. López
  • N. N. Nichols
  • B. S. Dien
  • J. Moreno
  • R. J. Bothast
Original Paper

Abstract

Acid pretreatment of lignocellulosic biomass releases furan and phenolic compounds, which are toxic to microorganisms used for subsequent fermentation. In this study, we isolated new microorganisms for depletion of inhibitors in lignocellulosic acid hydrolysates. A sequential enrichment strategy was used to isolate microorganisms from soil. Selection was carried out in a defined mineral medium containing a mixture of ferulic acid (5 mM), 5-hydroxymethylfurfural (5-HMF, 15 mM), and furfural (20 mM) as the carbon and energy sources, followed by an additional transfer into a corn stover hydrolysate (CSH) prepared using dilute acid. Subsequently, based on stable growth on these substrates, six isolates—including five bacteria related to Methylobacterium extorquens, Pseudomonas sp, Flavobacterium indologenes, Acinetobacter sp., Arthrobacter aurescens, and one fungus, Coniochaeta ligniaria—were chosen. All six isolates depleted toxic compounds from defined medium, but only C. ligniaria C8 (NRRL 30616) was effective at eliminating furfural and 5-HMF from CSH. C. ligniaria NRRL 30616 may be useful in developing a bioprocess for inhibitor abatement in the conversion of lignocellulosic biomass to fuels and chemicals.

References

  1. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) (1999) Current protocols in molecular biology. Wiley, New YorkGoogle Scholar
  2. Beck MJ (1986) Factors affecting efficiency of biomass fermentation to ethanol. Biotechnol Bioeng 17:617–627Google Scholar
  3. Boopathy R, Bokang H, Daniels L (1993) Biotransformation of furfural and 5-hydroxymethylfurfural by enteric bacteria. J Ind Microbiol 11:147–150Google Scholar
  4. Bothast RJ, Saha BC (1997) Ethanol production from agricultural biomass substrates. Adv Appl Microbiol 44:261–286Google Scholar
  5. Bugos RC, Sutherland JB, Adler JH (1988) Phenolic compound utilization by the soft rot fungus Lecythophora hoffmannii. Appl Environ Microbiol 54:1882–1885Google Scholar
  6. Dien BS, Bothast RJ, Nichols NN, Cotta MA (2002) The U.S. corn industry: an overview of current technology and future prospects. Int Sugar J 104:204–211Google Scholar
  7. Esteghlalian A, Hashimoto AG, Fenske JJ, Penner MH (1997) Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresour Technol 59:129–136CrossRefGoogle Scholar
  8. Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington D.C.Google Scholar
  9. Gong CS, Chen CS, Chen LF (1993) Pretreatment of sugar cane bagasses hemicellulose hydrolyzate for ethanol production by yeast. Appl Biochem Biotechnol 39/40:83–88Google Scholar
  10. Hsu T (1996) Pretreatment of biomass. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor and Francis, Washington D.C., pp 179–212Google Scholar
  11. Jernberg C, Jansson JK (2002) Impact of 4-chlorophenol contamination and/or inoculation with the 4-chlorophenol-degrading strain, Arthrobacter chlorophenolicus A6L, on soil bacterial community structure. FEMS Microbiol Ecol 42:387–397CrossRefGoogle Scholar
  12. Jönsson LJ, Palmqvist E, Nilvebrant N-O, Hahn-Hägerdal B (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49:691–697CrossRefGoogle Scholar
  13. Kim T, Hah Y, Hong S (1983) Toxic effects of furfural on Pseudomonas fluorescens. Korean J Microbiol 21:149–155Google Scholar
  14. Knupp G, Rücker G, Ramos-Cormenzana A, Garrido-Hoyos S, Neugebauer M, Ossenkop T (1996) Problems of identifying phenolic compounds during the microbial degradation of olive mill wastewater. Int Biodeterior Biodegrad 38:277–282CrossRefGoogle Scholar
  15. Koenig K, Andreesen JR (1990) Xanthine dehydrogenase and 2-furoyl-coenzyme A dehydrogenase from Pseudomonas putida Fu1: two molybdenum-containing dehydrogenases of novel structural composition. J Bacteriol 172:5999–6009PubMedGoogle Scholar
  16. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73:331–371CrossRefPubMedGoogle Scholar
  17. Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant, N-O (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24:151–159Google Scholar
  18. Luo C, Brink DL, Blanch HW (2001) Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioenerg 22:125–138CrossRefGoogle Scholar
  19. Martinez A, Rodriguez ME, Wells ML, York SW, Preston JF, Ingram LO (2001) Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog 17:287–293CrossRefPubMedGoogle Scholar
  20. Mielenz JR (2001) Ethanol production from biomass: technology and commercial status. Curr Opin Microbiol 4:324–329PubMedGoogle Scholar
  21. Nilsson T (1973) Studies on wood degradation and cellulolytic activity of microfungi. Stud For Suec 104:1–40Google Scholar
  22. Nilvebrant N-O, Reimann A, Larsson S, Jönsson LJ (2001) Detoxification of lignocellulose hydrolysates with ion-exchange resins. Appl Biochem Biotechnol 91/93:35–49Google Scholar
  23. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33CrossRefGoogle Scholar
  24. Palmqvist E, Hahn-Hägerdal B, Szengyel Z, Zacchi G, Rèczey K (1997) Simultaneous detoxification and enzyme production of hemicellulose hydrolysates obtained after steam pretreatment. Enzyme Microb Technol 20:286–293CrossRefGoogle Scholar
  25. Paul EA, Clark FE (1996) Soil microbiology and biochemistry, 2nd edn. Academic Press, New YorkGoogle Scholar
  26. Rosazza JPN, Huang Z, Dostal L, Volm T, Rousseau B (1995) Biocatalytic transformation of ferulic acid: abundant aromatic natural product. J Ind Microbiol 15:457–471PubMedGoogle Scholar
  27. Saddler JN (ed) (1993) Bioconversion of forest and agricultural plant residues. CAB International, Wallingford, UKGoogle Scholar
  28. Saeman JF (1945) Kinetics of wood saccharification. Hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37:43–52Google Scholar
  29. Saha BC, Bothast RJ (1999) Pretreatment and enzymatic saccharification of corn fiber. Appl Biochem Biotechnol 76:65–77Google Scholar
  30. Schneider H (1996) Selective removal of acetic acid from hardwood-spent sulfite liquor using a mutant yeast. Enzyme Microb Technol 19:94–98CrossRefGoogle Scholar
  31. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRefPubMedGoogle Scholar
  32. Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G (2000) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53:701–708PubMedGoogle Scholar
  33. Wang P, Brenchley JE, Humphrey AE (1994) Screening microorganisms for utilization of furfural and possible intermediates in its degradation pathway. Biotechnol Lett 16:977–982Google Scholar
  34. Weber E, Görke C, Begerow D (2002) The Lecythophora-Coniochaeta complex II. Molecular studies based on sequences of the large subunit of ribosomal DNA. Nova Hedwigia 74:187–200CrossRefGoogle Scholar
  35. Whitehead TR, Cotta MA (2001) Characterisation and comparison of microbial populations in swine faeces and manure storage pits by 16S rDNA gene sequence analyses. Anaerobe 7:181–187CrossRefGoogle Scholar
  36. Zaldivar J, Martinez A, Ingram LO (1999). Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 65:24–33CrossRefPubMedGoogle Scholar
  37. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • M. J. López
    • 1
  • N. N. Nichols
    • 2
  • B. S. Dien
    • 2
  • J. Moreno
    • 1
  • R. J. Bothast
    • 2
    • 3
  1. 1.Área de Microbiología, Departamento de Biología Aplicada, CITE II-BUniversidad de AlmeríaAlmeriaSpain
  2. 2.Fermentation Biotechnology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research ServiceUS Department of AgriculturePeoriaUSA
  3. 3.National Corn-to-Ethanol Research Pilot PlantSouthern Illinois University—EdwardsvilleEdwardsvilleUSA

Personalised recommendations