Applied Microbiology and Biotechnology

, Volume 63, Issue 2, pp 159–163 | Cite as

Azotobacter vinelandii mutants that overproduce poly-β-hydroxybutyrate or alginate

Original Paper


Azotobacter vinelandii produces two polymers of industrial importance, i.e. alginate and poly-β-hydroxybutyrate (PHB). Alginate synthesis constitutes a waste of substrate when seeking to optimize PHB production and, conversely, synthesis of PHB is undesirable when optimizing alginate production. In this study we evaluated the effect of a mutation in algA, the gene encoding the enzyme that catalyzes the first step of the alginate biosynthetic pathway in the production of PHB. We also evaluated production of alginate in strain AT6 carrying a phbB mutation that impairs PHB synthesis. The algA mutation prevented alginate production and increased PHB accumulation up to 5-fold, determined in milligrams per milligram of protein. Similarly, the phbB mutation increased alginate production up to 4-fold.


  1. Alexeyev FA, Shokolenko IN, Croughan TP (1995) Improved antibiotic-resistance gene cassettes and omega elements for Escherichia coli vector construction and in vivo deletion/insertion mutagenesis. Gene 160:63–67CrossRefPubMedGoogle Scholar
  2. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472PubMedGoogle Scholar
  3. Beale JM, Foster JL (1996) Carbohydrate fluxes into alginate biosynthesis in Azotobacter vinelandii NCIB 8789: NMR investigations of the triose pools. Biochemistry 35:4492–4501Google Scholar
  4. Brivonese AC, Sutherland IW (1989) Polymer production by a mucoid strain of Azotobacter vinelandii in batch culture. Appl Microbiol Biotechnol 30:97–102Google Scholar
  5. Byrom D (1987) Polymer synthesis by microorganisms: technology and economics. Trends Biotechnol 5:246–250Google Scholar
  6. Ertesvag H, Hoidal HK, Hals IK, Rian A, Doseth B, Valla S (1995) A family of modular type mannuronan C-5-epimerase genes controls alginate structure in Azotobacter vinelandii. Mol Microbiol 16:719–731PubMedGoogle Scholar
  7. Jain S, Ohman DE (1998) Deletion of algK in mucoid Pseudomonas aeruginosa blocks alginate polymer formation and results in uronic acid secretion. J Bacteriol 180:634–641PubMedGoogle Scholar
  8. Kennedy C, Gamal R, Humphrey R, Ramos J, Brigle K, Dean D (1986) The nifH, nifM and nifN genes of Azotobacter vinelandii: Characterization by Tn5 mutagenesis and isolation from pLARF1 gene banks. Mol Gen Genet 205:318–325Google Scholar
  9. Knutson CA, Jeanes A (1968) A new modification of the carbazole analysis: application to heteropolysaccharides. Anal Biochem 24:470–481PubMedGoogle Scholar
  10. Law JH, Slepecky RA (1961) Assay of polyhydroxybutiric acid. J Bacteriol 82:33–36Google Scholar
  11. Lee YL (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14Google Scholar
  12. Lowry D, Rosenbrough N, Farr A, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  13. Martínez P, Guzmán J, Espín G (1997) A mutation impairing alginate production increased accumulation of poly-β-hydroxybutyrate in Azotobacter vinelandii. Biotechnol Lett 19:909–912Google Scholar
  14. Núñez C, León R, Guzmán J, Espín G, Soberón-Chávez G (2000) Role of Azotobacter vinelandii mucA and mucC gene products in alginate production. J Bacteriol 182:6550–6556CrossRefPubMedGoogle Scholar
  15. Page WJ, Knosp O (1989) Hyperproduction of poly-β-hydroxybutyrate during exponential growth in Azotobacter vinelandii UWD. Appl Environ Microbiol 55:1334–1339Google Scholar
  16. Parente E, Crudele MA, Ricciardi A, Mancini M, Clementi F (2000) Effect of ammonium sulfate concentration and agitation speed on the kinetics of alginate production by Azotobacter vinelandii DSM576 in batch fermentation. J Ind Microbiol Biotechnol 25:242–248CrossRefGoogle Scholar
  17. Peralta-Gil M, Segura D, Guzmán J, Servín-Gonzalez L, Espín G (2002) Expression of the Azotobacter vinelandii poly-β-hydroxybutyrate biosynthetic phbBAC operon is driven by two overlapping promoters and is dependent on the transcriptional activator PhbR. J Bacteriol 184:5672–5677CrossRefPubMedGoogle Scholar
  18. Pindar DF, Bucke C (1975) The biosynthesis of alginic acid by Azotobacter vinelandii. Biochem J 152:617–622PubMedGoogle Scholar
  19. Rehm HA, Valla S (1997) Bacterial alginates: biosynthesis and applications. Appl Microbiol Biotechnol 178:5884–5889Google Scholar
  20. Rehm HA, Ertesvag H, Valla S (1996) A new Azotobacter vinelandii mannuronan C-5-epimerase (algG) is part of the alg gene cluster physically in a manner similar to that in Pseudomonas aeruginosa. J Bacteriol 178:5884–5889PubMedGoogle Scholar
  21. Segura D, Espín G (1998) Mutational inactivation of a gene homologous to Escherichia coli ptsP affects poly-β-hydroxybutyrate accumulation and nitrogen fixation in Azotobacter vinelandii. J Bacteriol 180:4790–4798PubMedGoogle Scholar
  22. Segura D, Cruz T, Espín G (2000) β-ketothiolase genes in Azotobacter vinelandii. Gene 260:113–120CrossRefPubMedGoogle Scholar
  23. Segura D, Cruz T, Espín G (2003) Encystment and alkylresorcinol production by Azotobacter vinelandii strains impaired in poly-β-hydroxybutyrate synthesis. Arch Microbiol 179:437–443PubMedGoogle Scholar
  24. Vázquez A, Moreno S, Guzmán J, Alvarado A, Espín G (1999) Transcriptional organization of the Azotobacter vinelandii algGXLVIFA genes: characterization of algF mutants. Gene 232:217–222CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Departamento de Microbiología Molecular, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavaca México

Personalised recommendations