Applied Microbiology and Biotechnology

, Volume 62, Issue 4, pp 316–330

Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage



To acquire iron, all species have to overcome the problems of iron insolubility and toxicity. In response to low iron availability in the environment, most fungi excrete ferric iron-specific chelators—siderophores—to mobilize this metal. Siderophore-bound iron is subsequently utilized via the reductive iron assimilatory system or uptake of the siderophore-iron complex. Furthermore, most fungi possess intracellular siderophores as iron storage compounds. Molecular analysis of siderophore biosynthesis was initiated by pioneering studies on the basidiomycete Ustilago maydis, and has progressed recently by characterization of the relevant structural and regulatory genes in the ascomycetes Aspergillus nidulans and Neurospora crassa. In addition, significant advances in the understanding of utilization of siderophore-bound iron have been made recently in the yeasts Saccharomyces cerevisiae and Candida albicans as well as in the filamentous fungus A. nidulans. The present review summarizes molecular details of fungal siderophore biosynthesis and uptake, and the regulatory mechanisms involved in control of the corresponding genes.


  1. Adjimani JP, Emery T (1987) Iron uptake in Mycelia sterilia EP-76. J Bacteriol 169:3664–3668PubMedGoogle Scholar
  2. An Z, Mei B, Yuan WM, Leong SA (1997a) The distal GATA sequences of the sid1 promoter of Ustilago maydis mediate iron repression of siderophore production and interact directly with Urbs1, a GATA family transcription factor. EMBO J 16:1742–1750CrossRefPubMedGoogle Scholar
  3. An Z, Zhao Q, McEvoy J, Yuan WM, Markley JL, Leong SA (1997b) The second finger of Urbs1 is required for iron-mediated repression of sid1 in Ustilago maydis. Proc Natl Acad Sci USA 94:5882–5887CrossRefPubMedGoogle Scholar
  4. Ardon O, Nudelman R, Caris C, Libman J, Shanzer A, Chen Y, Hadar Y (1998) Iron uptake in Ustilago maydis: tracking the iron path. J Bacteriol 180:2021–2026PubMedGoogle Scholar
  5. Ardon O, Bussey H, Philpott C, Ward DM, Davis-Kaplan S, Verroneau S, Jiang B, Kaplan J (2001) Identification of a Candida albicans ferrichrome transporter and its characterization by expression in Saccharomyces cerevisiae. J Biol Chem 276:43049–43055CrossRefPubMedGoogle Scholar
  6. Askwith C, Kaplan J (1997) An oxidase-permease-based iron transport system in Schizosaccharomyces pombe and its expression in Saccharomyces cerevisiae. J Biol Chem 272:401–405CrossRefPubMedGoogle Scholar
  7. Askwith CC, de Silva D, Kaplan J (1996) Molecular biology of iron acquisition in Saccharomyces cerevisiae. Mol Microbiol 20:27–34PubMedGoogle Scholar
  8. Blaiseau PL, Lesuisse E, Camadro JM (2001) Aft2p, a novel iron-regulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast. J Biol Chem 276:34221–34226CrossRefPubMedGoogle Scholar
  9. Brakhage AA, Langfelder K (2002) Menacing mold: the molecular biology of Aspergillus fumigatus. Annu Rev Microbiol 56:433–455CrossRefPubMedGoogle Scholar
  10. Brickman TJ, McIntosh MA (1992) Overexpression and purification of ferric enterobactin esterase from Escherichia coli. Demonstration of enzymatic hydrolysis of enterobactin and its iron complex. J Biol Chem 267:12350–12355PubMedGoogle Scholar
  11. Burt WR (1982) Identification of coprogen B and its breakdown products from Histoplasma capsulatum. Infect Immun 35:990–996PubMedGoogle Scholar
  12. Carrano CJ, Raymond KN (1978) Coordination chemistry of microbial iron transport compounds: rhodotorulic acid and iron uptake in Rhodotorula pilimanae. J Bacteriol 136:69–74PubMedGoogle Scholar
  13. Casas C, Aldea M, Espinet C, Gallego C, Gil R, Herrero E (1997) The AFT1 transcriptional factor is differentially required for expression of high-affinity iron uptake genes in Saccharomyces cerevisiae. Yeast 13:621–637CrossRefPubMedGoogle Scholar
  14. Charlang G, Ng B, Horowitz NH, Horowitz RM (1981) Cellular and extracellular siderophores of Aspergillus nidulans and Penicillium chrysogenum. Mol Cell Biol 1:94–100PubMedGoogle Scholar
  15. Chung YS, Chae K-S, Han DM, Jahng K-Y (1996) Chemical composition and structure of hyphal wall of null-pigment mutants of Aspergillus nidulans. Mol Cells 6:731–736Google Scholar
  16. Corson LB, Folmer J, Strain JJ, Culotta VC, Cleveland DW (1999) Oxidative stress and iron are implicated in fragmenting vacuoles of Saccharomyces cerevisiae lacking Cu,Zn-superoxide dismutase. J Biol Chem 274:27590–27596CrossRefPubMedGoogle Scholar
  17. Dancis A, Klausner RD, Hinnebusch AG, Barriocanal JG (1990) Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 10:2294–2301PubMedGoogle Scholar
  18. Dancis A, Roman DG, Anderson GJ, Hinnebusch AG, Klausner RD (1992) Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc Natl Acad Sci USA 89:3869–3873PubMedGoogle Scholar
  19. Davis RH (1986) Compartmental and regulatory mechanisms in the arginine pathways of Neurospora crassa and Saccharomyces cerevisiae. Microbiol Rev 50:280–313PubMedGoogle Scholar
  20. De Luca NG, Wood PM (2000) Iron uptake by fungi: contrasted mechanisms with internal or external reduction. Adv Microb Physiol 43:39–74PubMedGoogle Scholar
  21. Eck R, Hundt S, Hartl A, Roemer E, Kunkel W (1999) A multicopper oxidase gene from Candida albicans: cloning, characterization and disruption. Microbiology 145:2415–2422PubMedGoogle Scholar
  22. Ecker DJ, Emery T (1983) Iron uptake from ferrichrome A and iron citrate in Ustilago sphaerogena. J Bacteriol 155:616–622PubMedGoogle Scholar
  23. Eide DJ (2000) Metal ion transport in eukaryotic microorganisms: insights from Saccharomyces cerevisiae. Adv Microb Physiol 43:1–38PubMedGoogle Scholar
  24. Eide DJ, Bridgham JT, Zhao Z, Mattoon JR (1993) The vacuolar H(+)-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism. Mol Gen Genet 241:447–456PubMedGoogle Scholar
  25. Eisendle M, Oberegger H, Zadra I, Haas H (2003) The siderophor system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding l-ornithine N5-monooxygenase (sidA) and a nonribosomal peptide synthetase (sidC). Mol Microbiol (in press)Google Scholar
  26. Emery T (1971) Role of ferrichrome as a ferric ionophore in Ustilago sphaerogena. Biochemistry 10:1483–1488PubMedGoogle Scholar
  27. Emery T (1976) Fungal ornithine esterases: relationship to iron transport. Biochemistry 15:2723–2728PubMedGoogle Scholar
  28. Ernst JF, Winkelmann G (1977) Enzymatic release of iron from sideramines in fungi. NADH:sideramine oxidoreductase in Neurospora crassa. Biochim Biophys Acta 500:27–41CrossRefPubMedGoogle Scholar
  29. Fedorovich D, Protchenko O, Lesuisse E (1999) Iron uptake by the yeast Pichia guilliermondii. Flavinogenesis and reductive iron assimilation are co-regulated processes. Biometals 12:295–300CrossRefPubMedGoogle Scholar
  30. Fiedler HP, Krastel P, Muller J, Gebhardt K, Zeeck A (2001) Enterobactin: the characteristic catecholate siderophore of Enterobacteriaceae is produced by Streptomyces species. FEMS Microbiol Lett 115:125–130Google Scholar
  31. Foury F, Roganti T (2002) Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain. J Biol Chem 277:24475–24483CrossRefPubMedGoogle Scholar
  32. Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880PubMedGoogle Scholar
  33. Gardner PR, Fridovich I (1992) Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. J Biol Chem 267:8757–8763PubMedGoogle Scholar
  34. Garland SA, Hoff K, Vickery LE, Culotta VC (1999) Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron-sulfur cluster assembly. J Mol Biol 294:897–907CrossRefPubMedGoogle Scholar
  35. Georgatsou E, Alexandraki D (1999) Regulated expression of the Saccharomyces cerevisiae Fre1p/Fre2p Fe/Cu reductase related genes. Yeast 15:573–584CrossRefPubMedGoogle Scholar
  36. Haas H, Angermayr K, Stoffler G (1997) Molecular analysis of a Penicillium chrysogenum GATA factor encoding gene (sreP) exhibiting significant homology to the Ustilago maydis urbs1 gene. Gene 184:33–37CrossRefPubMedGoogle Scholar
  37. Haas H, Zadra I, Stoffler G, Angermayr K (1999) The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J Biol Chem 274:4613–4619PubMedGoogle Scholar
  38. Haas H, Schoeser M, Lesuisse E, Ernst JF, Parson W, Abt B, Winkelmann G, Oberegger H (2003) Characterisation of the Aspergillus nidulans transporters for the siderophores enterobactin and triacetylfusarinine C. Biochem J 371:505–513CrossRefPubMedGoogle Scholar
  39. Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14PubMedGoogle Scholar
  40. Harrison KA, Marzluf GA (2002) Characterization of DNA binding and the cysteine rich region of SRE, a GATA factor in Neurospora crassa involved in siderophore synthesis. Biochemistry 41:15288–15295CrossRefPubMedGoogle Scholar
  41. Haselwandter K (1995) Mycorrhizal fungi: siderophore production. Crit Rev Biotechnol 15:287–291Google Scholar
  42. Haselwandter K, Winkelmann G (2002) Ferricrocin—an ectomycorrhizal siderophore of Cenococcum geophilum. Biometals 15:73–77CrossRefPubMedGoogle Scholar
  43. Herrero M, de Lorenzo V, Neilands JB (1988) Nucleotide sequence of the iucD gene of the pColV-K30 aerobactin operon and topology of its product studied with phoA and lacZ gene fusions. J Bacteriol 170:56–64PubMedGoogle Scholar
  44. Heymann P, Ernst JF, Winkelmann G (1999) Identification of a fungal triacetylfusarinine C siderophore transport gene (TAF1) in Saccharomyces cerevisiae as a member of the major facilitator superfamily. Biometals 12:301–306CrossRefPubMedGoogle Scholar
  45. Heymann P, Ernst JF, Winkelmann G (2000a) A gene of the major facilitator superfamily encodes a transporter for enterobactin (Enb1p) in Saccharomyces cerevisiae. Biometals 13:65–72CrossRefPubMedGoogle Scholar
  46. Heymann P, Ernst JF, Winkelmann G (2000b) Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arn1p) in Saccharomyces cerevisiae. FEMS Microbiol Lett 186:221–227CrossRefPubMedGoogle Scholar
  47. Heymann P, Gerads M, Schaller M, Dromer F, Winkelmann G, Ernst JF (2002) The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. Infect Immun 70:5246–5255CrossRefPubMedGoogle Scholar
  48. Higgins CF (1995) The ABC of channel regulation. Cell 82:693–696PubMedGoogle Scholar
  49. Hoe KL, Won MS, Yoo OJ, Yoo HS (1996) Molecular cloning of GAF2, a Schizosaccharomyces pombe GATA factor, which has two zinc-finger sequences. Biochem Mol Biol Int 39:127–135PubMedGoogle Scholar
  50. Holzberg M, Artis WM (1983) Hydroxamate siderophore production by opportunistic and systemic fungal pathogens. Infect Immun 40:1134–1139PubMedGoogle Scholar
  51. Hordt W, Romheld V, Winkelmann G (2000) Fusarinines and dimerum acid, mono- and dihydroxamate siderophores from Penicillium chrysogenum, improve iron utilization by strategy I and strategy II plants. Biometals 13:37–46CrossRefPubMedGoogle Scholar
  52. Horowitz NH, Charlang G, Horn G, Williams NP (1976) Isolation and identification of the conidial germination factor of Neurospora crassa. J Bacteriol 127:135–140PubMedGoogle Scholar
  53. Howard DH (1999) Acquisition, transport, and storage of iron by pathogenic fungi. Clin Microbiol Rev 12:394–404PubMedGoogle Scholar
  54. Hu CJ, Bai C, Zheng XD, Wang YM, Wang Y (2002) Characterization and functional analysis of the siderophore-Fe transporter CaArn1p in Candida albicans. J Biol Chem 277:30598–30605CrossRefPubMedGoogle Scholar
  55. Ismail A, Bedell GW, Lupan DM (1985) Siderophore production by the pathogenic yeast, Candida albicans. Biochem Biophys Res Commun 130:885–891Google Scholar
  56. Jensen LT, Culotta VC (2002) Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron. J Mol Biol 318:251–260CrossRefPubMedGoogle Scholar
  57. Joyner DC, Lindow SE (2000) Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. Microbiology 146:2435–2445PubMedGoogle Scholar
  58. Kim Y, Yun CW, Philpott CC (2002) Ferrichrome induces endosome to plasma membrane cycling of the ferrichrome transporter, Arn1p, in Saccharomyces cerevisiae. EMBO J 21:3632–3642CrossRefPubMedGoogle Scholar
  59. Kleinkauf H, Von Dohren H (1996) A nonribosomal system of peptide biosynthesis. Eur J Biochem 236:335–351PubMedGoogle Scholar
  60. Knight SA, Lesuisse E, Stearman R, Klausner RD, Dancis A (2002) Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator. Microbiology 148:29–40PubMedGoogle Scholar
  61. Kosman DJ (2003) Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47:1185–1197CrossRefPubMedGoogle Scholar
  62. Latge JP (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12:310–350PubMedGoogle Scholar
  63. Leong SA, Winkelmann G (1998) Molecular biology of iron transport in fungi. Met Ions Biol Syst 35:147–186PubMedGoogle Scholar
  64. Lesuisse E, Labbe P (1989) Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae. J Gen Microbiol 135:257–263PubMedGoogle Scholar
  65. Lesuisse E, Casteras-Simon M, Labbe P (1995) Ferrireductase activity in Saccharomyces cerevisiae and other fungi: colorimetric assays on agar plates. Anal Biochem 226:375–377CrossRefPubMedGoogle Scholar
  66. Lesuisse E, Simon-Casteras M, Labbe P (1998) Siderophore-mediated iron uptake in Saccharomyces cerevisiae: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology 144:3455–3462Google Scholar
  67. Lesuisse E, Blaiseau PL, Dancis A, Camadro JM (2001) Siderophore uptake and use by the yeast Saccharomyces cerevisiae. Microbiology 147:289–298PubMedGoogle Scholar
  68. Lesuisse E, Knight SA, Camadro JM, Dancis A (2002) Siderophore uptake by Candida albicans: effect of serum treatment and comparison with Saccharomyces cerevisiae. Yeast 19:329–340CrossRefPubMedGoogle Scholar
  69. Li L, Chen OS, McVey Ward D, Kaplan J (2001) CCC1 is a transporter that mediates vacuolar iron storage in yeast. J Biol Chem 276:29515–29519CrossRefPubMedGoogle Scholar
  70. Liu Q, Dunlap JC (1996) Isolation and analysis of the arg-13 gene of Neurospora crassa. Genetics 143:1163–1174PubMedGoogle Scholar
  71. Martins LJ, Jensen LT, Simon JR, Keller GL, Winge DR, Simons JR (1998) Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae. J Biol Chem 273:23716–23721CrossRefPubMedGoogle Scholar
  72. Matzanke BF (1994) Iron storage in fungi. In: Winkelmann G, Winge DR (eds) Metal ions in fungi. Decker, New York, pp 179–213Google Scholar
  73. Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1987) Role of siderophores in iron storage in spores of Neurospora crassa and Aspergillus ochraceus. J Bacteriol 169:5873–5876PubMedGoogle Scholar
  74. Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1988) Ferricrocin functions as the main intracellular iron-storage compound in mycelia of Neurospora crassa. Biol Met 1:18–25PubMedGoogle Scholar
  75. Mei B, Budde AD, Leong SA (1993) sid1, a gene initiating siderophore biosynthesis in Ustilago maydis: molecular characterization, regulation by iron, and role in phytopathogenicity. Proc Natl Acad Sci USA 90:903–907PubMedGoogle Scholar
  76. Mootz HD, Schorgendorfer K, Marahiel MA (2002) Functional characterization of 4′-phosphopantetheinyl transferase genes of bacterial and fungal origin by complementation of Saccharomyces cerevisiae lys5. FEMS Microbiol Lett 213:51–57CrossRefPubMedGoogle Scholar
  77. Morrissey JA, Williams PH, Cashmore AM (1996) Candida albicans has a cell-associated ferric-reductase activity which is regulated in response to levels of iron and copper. Microbiology 142:485–492PubMedGoogle Scholar
  78. Muller G, Barclay SJ, Raymond KN (1985) The mechanism and specificity of iron transport in Rhodotorula pilimanae probed by synthetic analogs of rhodotorulic acid. J Biol Chem 260:13916–13920PubMedGoogle Scholar
  79. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726PubMedGoogle Scholar
  80. Neilands JB, Konopka K, Schwyn B, Coy M, Francis RT, Paw BH, Bagg A (1987) Comparative biochemistry of microbial iron assimilation. In: Winkelmann G, Winge DR (eds) Iron transport in microbes, plants and animals. VCH Weinheim, New York, pp 3–34Google Scholar
  81. Nilius AM, Farmer SG (1990) Identification of extracellular siderophores of pathogenic strains of Aspergillus fumigatus. J Med Vet Mycol 28:395–403PubMedGoogle Scholar
  82. Nyhus KJ, Jacobson ES (1999) Genetic and physiologic characterization of ferric/cupric reductase constitutive mutants of Cryptococcus neoformans. Infect Immun 67:2357–2365PubMedGoogle Scholar
  83. Oberegger H, Zadra I, Schoeser M, Haas H (2000) Iron starvation leads to increased expression of Cu/Zn-superoxide dismutase in Aspergillus. FEBS Lett 485:113–116CrossRefPubMedGoogle Scholar
  84. Oberegger H, Schoeser M, Zadra I, Abt B, Haas H (2001) SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans. Mol Microbiol 41:1077–1089CrossRefPubMedGoogle Scholar
  85. Oberegger H, Schoeser M, Zadra I, Schrettl M, Parson W, Haas H (2002a) Regulation of freA, acoA, lysF and cycA expression by iron availability in Aspergillus nidulans. Appl Environ Microbiol 68:5769–5772PubMedGoogle Scholar
  86. Oberegger H, Zadra I, Schoeser M, Abt B, Parson W, Haas H (2002b) Identification of members of the Aspergillus nidulans SREA regulon: genes involved in siderophore biosynthesis and utilization. Biochem Soc Trans 30:781–783PubMedGoogle Scholar
  87. Ong DE, Emery TF (1972) Ferrichrome biosynthesis: enzyme catalyzed formation of the hydroxamic acid group. Arch Biochem Biophys 148:77–83PubMedGoogle Scholar
  88. Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34PubMedGoogle Scholar
  89. Pelletier B, Beaudoin J, Mukai Y, Labbe S (2002) Fep1, an iron sensor regulating iron transporter gene expression in Schizosaccharomyces pombe. J Biol Chem 277:22950–29958CrossRefPubMedGoogle Scholar
  90. Perotto S, Bonfante P (1997) Bacterial associations with mycorrhizal fungi: close and distant friends in the rhizosphere. Trends Microbiol 5:496–501CrossRefPubMedGoogle Scholar
  91. Philpott CC, Rashford J, Yamaguchi-Iwai Y, Rouault TA, Dancis A, Klausner RD (1998) Cell-cycle arrest and inhibition of G1 cyclin translation by iron in AFT1-1(up) yeast. EMBO J 17:5026–5036CrossRefPubMedGoogle Scholar
  92. Plattner HJ, Diekmann H (1994) Enzymology of siderophore biosynthesis in fungi. In: Winkelmann G, Winge DR (eds) Metal ions in fungi. Decker, New York, pp 99–117Google Scholar
  93. Portnoy ME, Jensen LT, Culotta VC (2002) The distinct methods by which manganese and iron regulate the Nramp transporters in yeast. Biochem J 362:119–124CrossRefPubMedGoogle Scholar
  94. Raguzzi F, Lesuisse E, Crichton RR (1988) Iron storage in Saccharomyces cerevisiae. FEBS Lett 231:253–258CrossRefPubMedGoogle Scholar
  95. Ramanan N, Wang Y (2000) A high-affinity iron permease essential for Candida albicans virulence. Science 288:1062–1064CrossRefPubMedGoogle Scholar
  96. Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941CrossRefPubMedGoogle Scholar
  97. Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142CrossRefGoogle Scholar
  98. Robertson LS, Causton HC, Young RA, Fink GR (2000) The yeast A kinases differentially regulate iron uptake and respiratory function. Proc Natl Acad Sci USA 97:5984–5988PubMedGoogle Scholar
  99. Roosenberg JM, Lin YM, Lu Y, Miller MJ (2000) Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr Med Chem 7:159–197PubMedGoogle Scholar
  100. Rutherford JC, Jaron S, Ray E, Brown PO, Winge DR (2001) A second iron-regulatory system in yeast independent of Aft1p. Proc Natl Acad Sci USA 98:14322–14327CrossRefPubMedGoogle Scholar
  101. Scazzocchio C (2000) The fungal GATA factors. Curr Opin Microbiol 3:126–131PubMedGoogle Scholar
  102. Smith RL, Johnson AD (2000) Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 25:325–330CrossRefPubMedGoogle Scholar
  103. Stadler JA, Schweyen RJ (2002) The yeast iron regulon is induced upon cobalt stress and crucial for cobalt tolerance. J Biol Chem 277:39649–39654CrossRefPubMedGoogle Scholar
  104. Straka JG, Emery T (1979) The role of ferrichrome reductase in iron metabolism of Ustilago sphaerogena. Biochim Biophys Acta 569:277–286CrossRefPubMedGoogle Scholar
  105. Szczypka MS, Zhu Z, Silar P, Thiele DJ (1997) Saccharomyces cerevisiae mutants altered in vacuole function are defective in copper detoxification and iron-responsive gene transcription. Yeast 13:1423–1435CrossRefPubMedGoogle Scholar
  106. Timmerman MM, Woods JP (1999) Ferric reduction is a potential iron acquisition mechanism for Histoplasma capsulatum. Infect Immun 67:6403–6408PubMedGoogle Scholar
  107. Urbanowski JL, Piper RC (1999) The iron transporter Fth1p forms a complex with the Fet5 iron oxidase and resides on the vacuolar membrane. J Biol Chem 274:38061–38070CrossRefPubMedGoogle Scholar
  108. Van der Helm D, Winkelmann G (1994): Hydroxamates and polycarbonates as iron transport agents (siderophores) in fungi. In: Winkelmann G, Winge DR (eds) Metal ions in fungi. Decker, New York, pp 39–148Google Scholar
  109. Van Ho A, McVey Ward D, Kaplan J (2002) Transition metal transport in yeast. Annu Rev Microbiol 56:237–261CrossRefPubMedGoogle Scholar
  110. Visca P, Ciervo A, Orsi N (1994) Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdin biosynthetic enzyme l-ornithine N5-oxygenase in Pseudomonas aeruginosa. J Bacteriol 176:1128–1140PubMedGoogle Scholar
  111. Voisard C, Wang J, McEvoy JL, Xu P, Leong SA (1993) urbs1, a gene regulating siderophore biosynthesis in Ustilago maydis, encodes a protein similar to the erythroid transcription factor GATA-1. Mol Cell Biol 13:7091–7100PubMedGoogle Scholar
  112. Waters BM, Eide DJ (2002) Combinatorial control of yeast FET4 gene expression by iron, zinc, and oxygen. J Biol Chem 277:33749–33757CrossRefPubMedGoogle Scholar
  113. Weber T, Marahiel MA (2001) Exploring the domain structure of modular nonribosomal peptide synthetases. Structure (Cambridge) 9:R3–R9Google Scholar
  114. Weinberg ED (1993) The development of awareness of iron-withholding defense. Perspect Biol Med 36:215–221PubMedGoogle Scholar
  115. Weinberg ED (1999) The role of iron in protozoan and fungal infectious diseases. J Eukaryot Microbiol 46:231–238PubMedGoogle Scholar
  116. Weissman Z, Shemer R, Kornitzer D (2002) Deletion of the copper transporter CaCCC2 reveals two distinct pathways for iron acquisition in Candida albicans. Mol Microbiol 44:1551–1560CrossRefPubMedGoogle Scholar
  117. Wiest A, Grzegorski D, Xu BW, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley C (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem 277:20862–20868CrossRefPubMedGoogle Scholar
  118. Wilhite SE, Lumsden RD, Straney DC (2001) Peptide synthetase gene in Trichoderma virens. Appl Environ Microbiol 67:5055–5062CrossRefPubMedGoogle Scholar
  119. Winkelmann G (1993) Kinetics, energetics, and mechanisms of siderophore iron transport in fungi. In: Barton LL, Hemmings BC (eds) Iron chelation in plants and soil microorganisms. Academic Press, New York, pp 219–239Google Scholar
  120. Winkelmann G (2001) Siderophore transport in fungi. In: Winkelmann G (ed) Microbial transport systems. Wiley-VCH, WeinheimGoogle Scholar
  121. Winkelmann G (2002) Microbial siderophore-mediated transport. Biochem Soc Trans 30:691–696PubMedGoogle Scholar
  122. Yamada O, Nan SN, Akao T, Tominaga M, Watanabe H, Satoh T, Enei H, Akita O (2003) dffA gene of Aspergillus oryzae encodes l-ornithine N5-oxygenase and is indispensable for deferriferrchrysin biosynthesis. J Biosci Bioeng 95:82–88CrossRefGoogle Scholar
  123. Yamaguchi-Iwai Y, Dancis A, Klausner RD (1995) AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J 14:1231–1239PubMedGoogle Scholar
  124. Yamaguchi-Iwai Y, Stearman R, Dancis A, Klausner RD (1996) Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. EMBO J 15:3377–3384PubMedGoogle Scholar
  125. Yamaguchi-Iwai Y, Ueta R, Fukunaka A, Sasaki R (2002) Subcellular localization of Aft1 transcription factor responds to iron status in Saccharomyces cerevisiae. J Biol Chem 277:18914–18918CrossRefPubMedGoogle Scholar
  126. Yuan WM, Gentil GD, Budde AD, Leong SA (2001) Characterization of the Ustilago maydis sid2 gene, encoding a multidomain peptide synthetase in the ferrichrome biosynthetic gene cluster. J Bacteriol 183:4040–4051CrossRefPubMedGoogle Scholar
  127. Yun CW, Ferea T, Rashford J, Ardon O, Brown PO, Botstein D, Kaplan J, Philpott CC (2000a) Desferrioxamine-mediated iron uptake in Saccharomyces cerevisiae. Evidence for two pathways of iron uptake. J Biol Chem 275:10709–10715CrossRefPubMedGoogle Scholar
  128. Yun CW, Tiedeman JS, Moore RE, Philpott CC (2000b) Siderophore-iron uptake in Saccharomyces cerevisiae. Identification of ferrichrome and fusarinine transporters. J Biol Chem 275:16354–16359CrossRefPubMedGoogle Scholar
  129. Yun CW, Bauler M, Moore RE, Klebba PE, Philpott CC (2001) The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. J Biol Chem 276:10218–10223CrossRefPubMedGoogle Scholar
  130. Zhou L, Marzluf GA (1999) Functional analysis of the two zinc fingers of SRE, a GATA-type factor that negatively regulates siderophore synthesis in Neurospora crassa. Biochemistry 38:4335–4341CrossRefPubMedGoogle Scholar
  131. Zhou LW, Haas H, Marzluf GA (1998) Isolation and characterization of a new gene, sre, which encodes a GATA- type regulatory protein that controls iron transport in Neurospora crassa. Mol Gen Genet 259:532–540CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Molecular BiologyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations