Applied Microbiology and Biotechnology

, Volume 62, Issue 2–3, pp 99–109 | Cite as

The Corynebacterium glutamicum genome: features and impacts on biotechnological processes

Mini-Review

Abstract

Corynebacterium glutamicum has played a principal role in the progress of the amino acid fermentation industry. The complete genome sequence of the representative wild-type strain of C. glutamicum, ATCC 13032, has been determined and analyzed to improve our understanding of the molecular biology and physiology of this organism, and to advance the development of more efficient production strains. Genome annotation has helped in elucidation of the gene repertoire defining a desired pathway, which is accelerating pathway engineering. Post genome technologies such as DNA arrays and proteomics are currently undergoing rapid development in C. glutamicum. Such progress has already exposed new regulatory networks and functions that had so far been unidentified in this microbe. The next goal of these studies is to integrate the fruits of genomics into strain development technology. A novel methodology that merges genomics with classical strain improvement has been developed and applied for the reconstruction of classically derived production strains. How can traditional fermentation benefit from the C. glutamicum genomic data? The path from genomics to biotechnological processes is presented.

References

  1. Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675PubMedGoogle Scholar
  2. Bathe B, Kalinowski J, Pühler A (1996) A physical and genetic map of the Corynebacterium glutamicum ATCC 13032 chromosome. Mol Gen Genet 252:255–265CrossRefPubMedGoogle Scholar
  3. Bellmann A, Vrljic M, Patek M, Sahm H, Kramer R, Eggeling L (2001) Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum. Microbiology 147:1765–1774PubMedGoogle Scholar
  4. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618CrossRefPubMedGoogle Scholar
  5. Bukanov NO, Nashchokina OO, Borinskaia SA, Lobashev AV, Fonshtein MIu, Gusiatiner MM, Debabov VG, Iankovskii NK (1998) Construction and characteristics of a cosmid library of genes of the bacterium Corynebacterium glutamicum ATCC13032. Genetika 34:438–41PubMedGoogle Scholar
  6. Burkovski A, Krämer R (2002) Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl Microbiol Biotechnol 58:265–274PubMedGoogle Scholar
  7. Cameron DC, Tong I-T (1993) Cellular and metabolic engineering. Appl Biochem Biotechnol 38:105–140PubMedGoogle Scholar
  8. Claes WA, Pühler A, Kalinowski J (2002) Identification of two prpDBC gene clusters in Corynebacterium glutamicum and their involvement in propionate degradation via the 2-methylcitrate cycle. J Bacteriol 184:2728–2739CrossRefPubMedGoogle Scholar
  9. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641Google Scholar
  10. Eggeling L, Sahm H (1999) Amino acid production: principles of metabolic engineering. In: Lee SY, Papoutsakis ET (eds) Metabolic engineering. Dekker, New York, pp 153–176Google Scholar
  11. Eggeling L, Sahm H (2001) The cell wall barrier of Corynebacterium glutamicum and amino acid efflux. J Biosci Bioeng 92:201–213CrossRefGoogle Scholar
  12. Eggeling L, Sahm H, Graaf AA de (1996) Quantifying and directing metabolic flux: application to amino acid overproduction. Adv Biochem Eng Biotechnol 54:1–30Google Scholar
  13. Eggeling L, Oberle S, Sahm H (1998) Improved l-lysine yield with Corynebacterium glutamicum: use of dapA resulting in increased flux combined with growth limitation. Appl Microbiol Biotechnol 49:24–30CrossRefPubMedGoogle Scholar
  14. Fillinger S, Boschi-Muller S, Azza S, Dervyn E, Branlant G, Aymerich S (2000) Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 275:14031–14037PubMedGoogle Scholar
  15. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512PubMedGoogle Scholar
  16. Fudou R, Jojima Y, Seto A, Yamada K, Kimura E, Nakamatsu T, Hiraishi A, Yamanaka S (2002) Corynebacterium efficiens sp. nov., a glutamic-acid-producing species from soil and vegetables. Int J Syst Evol Microbiol 52:1127–1131CrossRefPubMedGoogle Scholar
  17. Fujio T (2001) Minimum genome factory (MGF). In: New development of chiral technology. CMC, Tokyo, pp 8–16Google Scholar
  18. Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202PubMedGoogle Scholar
  19. Gordon D, Desmarais C, Green P (2001) Automated finishing with autofinish. Genome Res 11:614–625CrossRefPubMedGoogle Scholar
  20. Guillouet S, Rodal AA, An G, Lessard PA, Sinskey AJ (1999) Expression of the Escherichia coli catabolic threonine dehydratase in Corynebacterium glutamicum and its effect on isoleucine production. Appl Environ Microbiol 65:3100–3107PubMedGoogle Scholar
  21. Haberhauer G, Schröder H, Pompejus M, Zelder O, Kröger B (2001) Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport. Patent WO 01/00805Google Scholar
  22. Hayashi M, Mizoguchi H, Shiraishi N, Obayashi M, Nakagawa S, Imai J, Watanabe S, Ota T, Ikeda M (2002) Transcriptome analysis of acetate metabolism in Corynebacterium glutamicum using a newly developed metabolic array. Biosci Biotechnol Biochem 66:1337–1344Google Scholar
  23. Haynes JA, Britz ML (1990) The effect of growth conditions of Corynebacterium glutamicum on the transformation frequency obtained by electroporation. J Gen Microbiol 136:255–263Google Scholar
  24. Hermann T, Wersch G, Uhlemann EM, Schmid R, Burkovski A (1998) Mapping and identification of Corynebacterium glutamicum proteins by two-dimensional gel electrophoresis and microsequencing. Electrophoresis 19:3217–3221PubMedGoogle Scholar
  25. Hermann T, Finkemeier M, Pfefferle W, Wersch G, Krämer R, Burkovski A (2000) Two-dimensional electrophoretic analysis of Corynebacterium glutamicum membrane fraction and surface proteins. Electrophoresis 21:654–659CrossRefPubMedGoogle Scholar
  26. Hermann T, Pfefferle W, Baumann C, Busker E, Schaffer S, Bott M, Sahm H, Dusch N, Kalinowski J, Pühler A, Bendt AK, Krämer R, Burkovski A (2001) Proteome analysis of Corynebacterium glutamicum. Electrophoresis 22:1712–1723CrossRefPubMedGoogle Scholar
  27. Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379PubMedGoogle Scholar
  28. Ikeda M (2002) Genome breeding of amino acid-producing Corynebacterium glutamicum. In: Proceedings of Metabolic Engineering IV, Tuscany, Italy, 6–11 October 2002Google Scholar
  29. Ikeda M (2003) Amino acid production processes. In: Faurie R, Thommel J (eds) Adv Biochem Eng Biotechnol, vol 79. Microbial production of l-amino acids. Springer, Berlin Heidelberg New York, pp 1–35Google Scholar
  30. Ikeda M, Katsumata R (1992) Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum strain. Appl Environ Microbiol 58:781–785Google Scholar
  31. Ikeda M, Katsumata R (1998) A novel system with positive selection for the chromosomal integration of replicative plasmid DNA in Corynebacterium glutamicum. Microbiology 144:1863–1868PubMedGoogle Scholar
  32. Ikeda M, Katsumata R (1999) Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway. Appl Environ Microbiol 65:2497–2502PubMedGoogle Scholar
  33. Ikeda M, Nakanishi K, Kino K, Katsumata R (1994) Fermentative production of tryptophan by a stable recombinant strain of Corynebacterium glutamicum with a modified serine-biosynthetic pathway. Biosci Biotechnol Biochem 58:674–678PubMedGoogle Scholar
  34. Ikeda M, Okamoto K, Katsumata R (1999) Cloning of the transketolase gene and the effect of its dosage on aromatic amino acid production in Corynebacterium glutamicum. Appl Microbiol Biotechnol 51:201–206Google Scholar
  35. Ishino S, Shimomura-Nishimura J, Yamaguchi K, Shirahata K, Araki K (1991) 13C Nuclear magnetic resonance studies of glucose metabolism in l-glutamic acid and l-lysine fermentation by Corynebacterium glutamicum. J Gen Appl Microbiol 37:157–165Google Scholar
  36. Jetten MSM, Sinskey AJ (1995) Recent advances in the physiology and genetics of amino acid-producing bacteria. Crit Rev Biotechnol 15:73–103PubMedGoogle Scholar
  37. Kaneko H, Sakaguchi K (1979) Fusion of protoplasts and genetic recombination of Brevibacterium flavum. Agric Biol Chem 43:1007–1013Google Scholar
  38. Karasawa M, Tosaka O, Ikeda S, Yoshii H (1986) Application of protoplast fusion to the development of l-threonine and l-lysine producers. Agric Biol Chem 50:339–346Google Scholar
  39. Katsumata R, Ikeda M (1993) Hyperproduction of tryptophan in Corynebacterium glutamicum by pathway engineering. Biotechnology 11:921–925Google Scholar
  40. Katsumata R, Ozaki A, Oka T, Furuya A (1984) Protoplast transformation of glutamate-producing bacteria with plasmid DNA. J Bacteriol 159:306–311PubMedGoogle Scholar
  41. Kennerknecht N, Sahm H, Yen MR, Patek M, Saier MH Jr, Eggeling L (2002) Export of l-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family. J Bacteriol 184:3947–3956CrossRefPubMedGoogle Scholar
  42. Kimura E (2003) Metabolic engineering of glutamate production. In: Faurie R, Thommel J (eds) Adv Biochem Eng Biotechnol, vol 79. Microbial production of l-amino acids. Springer, Berlin Heidelberg New York, pp 37–57Google Scholar
  43. Kimura E, Yagoshi C, Kawahara Y, Ohsumi T, Nakamatsu T, Tokuda H (1999) Glutamate overproduction in Corynebacterium glutamicum triggered by a decrease in the level of a complex comprising DtsR and a biotin-containing subunit. Biosci Biotechnol Biochem 63:1274–1278Google Scholar
  44. Kinoshita S, Nakayama K (1978) Amino acids. In: Rose AH (ed) Primary products of metabolism. Academic press, London, pp 209–261Google Scholar
  45. Kinoshita S, Udaka S, Shimono M (1957) Studies on amino acid fermentation. Part I. Production of l-glutamic acid by various microorganisms. J Gen Appl Microbiol 3:193–205Google Scholar
  46. Kolisnychenko V, Plunkett G III, Herring CD, Fehér T, Pósfai J, Blattner FR, Pósfai G (2002) Engineering a reduced Escherichia coli genome. Genome Res 12:640–647CrossRefPubMedGoogle Scholar
  47. Krämer R (1994) Systems and mechanisms of amino acid uptake and excretion in prokaryotes. Arch Microbiol 162:1–13PubMedGoogle Scholar
  48. Krämer R (1996) Genetic and physiological approaches for the production of amino acids. J Biotechnol 45:1–21CrossRefGoogle Scholar
  49. Krämer R, Boles E, Eggeling L, Erdmann A, Gutmann M, Kronemeyer W, Palmieri L, Zittrich S (1994) Mechanism and energetics of amino-acid transport in coryneform bacteria. Biochim Biophys Acta 1187:245–249Google Scholar
  50. Kumagai H (2000) Microbial production of amino acids in Japan. In: Fiechter A (ed) Adv Biochem Eng Biotechnol, vol 69. History of modern biotechnology I. Springer, Berlin Heidelberg New York, pp 71–85Google Scholar
  51. Leuchtenberger W (1996) Amino acids—technical production and use. In: Roehr M (ed) Biotechnology, 2nd edn, vol 6. Products of primary metabolism. VCH, Weinheim, pp 465–502Google Scholar
  52. Loos A, Glanemann C, Willis LB, O'Brien XM, Lessard PA, Gerstmeir R, Guillouet S, Sinskey AJ (2001) Development and validation of Corynebacterium DNA microarrays. Appl Environ Microbiol 67:2310–2318CrossRefPubMedGoogle Scholar
  53. Lucchini S, Thompson A, Hinton JCD (2001) Microarrays for microbiologists. Microbiology 147:1403–1414PubMedGoogle Scholar
  54. Marx A, Graaf AA de, Wiechert W, Eggeling L, Sahm H (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolic balancing. Biotechnol Bioeng 49:111–129CrossRefGoogle Scholar
  55. Marx A, Eikmanns BJ, Sahm H, Graaf AA de, Eggeling L, (1999) Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Metabol Eng 1:35–48CrossRefGoogle Scholar
  56. Matsushita K, Yamamoto T, Toyama H, Adachi O (1998) NADPH oxidase system as a superoxide-generating cyanide-resistant pathway in the respiratory chain of Corynebacterium glutamicum. Biosci Biotechnol Biochem 62:1968–1977Google Scholar
  57. Mitsuhashi S, Ohnishi J, Hayashi M, Ikeda M (2002) Physiological role of carbonic anhydrase in Corynebacterium glutamicum. In: Proc Annu Meeting Agric Chem Soc Jpn, Sendai, Japan, 25–27 March 2002, p 289Google Scholar
  58. Miwa K, Matsui K, Terabe M, Ito K, Ishida M, Takagi H, Nakamori S, Sano K (1985) Construction of novel shuttle vector and a cosmid vector for the glutamic acid-producing bacteria Brevibacterium lactofermentum and Corynebacterium glutamicum. Gene 39:281–286CrossRefPubMedGoogle Scholar
  59. Möckel B, Weissenborn A, Pfefferle W, Kalinowski J, Bathe B, Pühler A (1999) Genome sequencing of industrial microorganisms: The Corynebacterium glutamicum ATCC 13032 genome project. Microb Comp Genomics 4:111Google Scholar
  60. Muffler A, Bettermann S, Haushalter M, Hörlein A, Neveling U, Schramm M, Sorgenfrei O (2002) Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose. J Biotechnol 98:255–268CrossRefPubMedGoogle Scholar
  61. Mushegian AR, Koonin EV (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci USA 93:10268–10273PubMedGoogle Scholar
  62. Nakagawa S (2002) The complete genome sequencing of Corynebacterium glutamicum ATCC 13032. In: Proceedings of the 9th International Symposium on the Genetics of Industrial Microorganisms, Gyeongju, Korea, 1–5 July 2002, p 21Google Scholar
  63. Nakagawa S, Mizoguchi H, Ando S, Hayashi M, Ochiai K, Yokoi H, Tateishi N, Senoh A, Ikeda M, Ozaki A (2001) Novel polynucleotides. Eur Patent 1,108,790Google Scholar
  64. Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55:263–283CrossRefPubMedGoogle Scholar
  65. Nierman WC, Nelson KE (2002) Genomics for applied microbiology. Adv Appl Microbiol 51:201–245PubMedGoogle Scholar
  66. Nishio Y, Nakamura Y, Kawarabayashi Y, Usuda Y, Kimura E, Sugimoto S, Matsui K, Yamagishi A, Kikuchi H, Ikeo K, Gojobori T (2002) Comparative genome sequence analysis of the thermostabilization mechanism of Corynebacterium efficiens. In: Proc Annu Meet Mol Biol Soc Japan, Yokohama, Japan, 11–14 December 2002, p 724Google Scholar
  67. O'Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021PubMedGoogle Scholar
  68. Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new l-lysine-producing mutant. Appl Microbiol Biotechnol 58:217–223Google Scholar
  69. Ohnishi J, Hayashi M, Mitsuhashi S, Ikeda M (2003) Efficient 40°C fermentation of l-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl Microbiol Biotechnol (in press) DOI 10.1007/s00253-003-1254-2Google Scholar
  70. Ozaki A, Katsumata R, Oka T, Furuya A (1985) Cloning of the genes concerned in phenylalanine biosynthesis in Corynebacterium glutamicum and its application to breeding of a phenylalanine producing strain. Agric Biol Chem 49:2925–2930Google Scholar
  71. Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846PubMedGoogle Scholar
  72. Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WPC, Ryan CM, del Cardayré S (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712CrossRefPubMedGoogle Scholar
  73. Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Möckel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3:295–300PubMedGoogle Scholar
  74. Peterson SN, Fraser CM (2001) The complexity of simplicity. Genome Biol 2:2002.1–2002.8CrossRefGoogle Scholar
  75. Pfefferle W, Möckel B, Bathe B, Marx A (2003) Biotechnological manufacture of lysine. In: Faurie R, Thommel J (eds) Adv Biochem Eng Biotechnol, vol. 79. Microbial production of l-amino acids. Springer, Berlin Heidelberg New York, pp 59–112Google Scholar
  76. Rest ME van der, Lange C, Molenaar D (1999) A heat shock following electroporation of Corynebacterium glutamicum with xenogenein plasmid DNA. Appl Microbiol Biotechnol 52:541–545PubMedGoogle Scholar
  77. Riehle MM, Bennett AF, Long AD (2001) Genetic architecture of thermal adaptation in Escherichia coli. Proc Natl Acad Sci USA 98:525–530CrossRefPubMedGoogle Scholar
  78. Sahm H, Eggeling L, Graaf AA de (2000) Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol Chem 381:899–910PubMedGoogle Scholar
  79. Salzberg S, Delcher A, Kasif S, White O (1998) Microbial gene identification using interpolated Markov models. Nucleic Acids Res 26:544–548CrossRefPubMedGoogle Scholar
  80. Santamaria R, Gil JA, Mesas JM, Martin JF (1984) Characterization of an endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofermentum. J Gen Microbiol 130:2237–2246Google Scholar
  81. Schäfer A, Kalinowski J, Simon R, Seep-Feldhaus A-H, Pühler A (1990) High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive Coryneform bacteria. J Bacteriol 172:1663–1666PubMedGoogle Scholar
  82. Schäfer A, Tauch A, Droste N, Pühler A, Kalinowski J (1997) The Corynebacterium glutamicum cglIM gene encoding a 5-cytosine methyltransferase enzyme confers a specific DNA methylation pattern in an McrBC-deficient Escherichia coli strain. Gene 203:95–101CrossRefPubMedGoogle Scholar
  83. Schaffer S, Weil B, Nguyen VD, Dongmann G, Günther K, Nickolaus M, Hermann T, Bott M (2001) A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum. Electrophoresis 22:4404–4422PubMedGoogle Scholar
  84. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470PubMedGoogle Scholar
  85. Schmid R, Uhlemann E-M, Nolden L, Wersch G, Hecker R, Hermann T, Marx A, Burkovski A (2000) Response to nitrogen starvation in Corynebacterium glutamicum. FEMS Microbiol Lett 187:83–88CrossRefPubMedGoogle Scholar
  86. Schwarzer A, Pühler A (1991) Manipulation of Corynebacterium glutamicum by gene disruption and replacement. Biotechnology 9:84–87PubMedGoogle Scholar
  87. Sekine H, Shimada T, Hayashi C, Ishiguro A, Tomita F, Yokota A (2001) H+-ATPase defect in Corynebacterium glutamicum abolished glutamic acid production with enhancement of glucose consumption rate. Appl Microbiol Biotechnol 57:534–540CrossRefPubMedGoogle Scholar
  88. Shimizu H (2002) Metabolic engineering Integrating methodologies of molecular breeding and bioprocess systems engineering. J Biosci Bioeng 94:563–573CrossRefGoogle Scholar
  89. Simic P, Sahm H, Eggeling L (2001) l-Threonine export: use of peptides to identify a new translocator from Corynebacterium glutamicum. J Bacteriol 183:5317–5324PubMedGoogle Scholar
  90. Skovgaard M, Jensen LJ, Brunak S, Ussery D, Krogh A (2001) On the total number of genes and their length distribution in complete microbial genomes. Trends Genet 17:425–428CrossRefPubMedGoogle Scholar
  91. Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11CrossRefPubMedGoogle Scholar
  92. Stephanopoulos G, Vallino JJ (1991) Network rigidity and metabolic engineering in metabolite overproduction. Science 252:1675–1681PubMedGoogle Scholar
  93. Tauch A, Homann I, Mormann S, Rüberg S, Billault A, Bathe B, Brand S, Brockmann-Gretza O, Rückert C, Schischka N, Wrenger C, Hoheisel J, Möckel B, Huthmacher K, Pfefferle W, Pühler A, Kalinowski J (2002) Strategy to sequence the genome of Corynebacterium glutamicum ATCC 13032: use of a cosmid and a bacterial artificial chromosome library. J Biotechnol 95:25–38CrossRefPubMedGoogle Scholar
  94. Udaka S (1960) Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J Bacteriol 79:754–755Google Scholar
  95. Vallino JJ, Stephanopoulos G (1993) Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng 41:633–646Google Scholar
  96. Vrljić M, Sahm H, Eggeling L (1996) A new type of transporter with a new type of cellular function: l-lysine export from Corynebacterium glutamicum. Mol Microbiol 22:815–826PubMedGoogle Scholar
  97. Vrljić M, Garg J, Bellmann A, Wachi S, Freudl R, Malecki MJ, Sahm H, Kozina VJ, Eggeling L, Saier MH Jr (1999) The LysE superfamily: topology of the lysine exporter LysE of Corynebacterium glutamicum, a paradigm for a novel superfamily of transmembrane solute translocators. J Mol Microbiol Biotechnol 1:327–336PubMedGoogle Scholar
  98. Wehmeier L, Schäfer A, Burkovski A, Krämer R, Mechold U, Malke H, Pühler A, Kalinowski J (1998) The role of the Corynebacterium glutamicum rel gene in (p)ppGpp metabolism. Microbiology 144:1853–1862PubMedGoogle Scholar
  99. Wehmeier L, Brockmann-Gretza O, Pisabarro A, Tauch A, Pühler A, Martin JF, Kalinowski J (2001) A Corynebacterium glutamicum mutant with a defined deletion within the rplK gene is impaired in (p)ppGpp accumulation upon amino acid starvation. Microbiology 147:691–700PubMedGoogle Scholar
  100. Yoshihama M, Higashiro K, Rao EA, Akedo M, Shanabruch WG, Folletie MT, Walker GC, Sinskey AJ (1985) Cloning vector system for Corynebacterium glutamicum. J Bacteriol 162:591–597PubMedGoogle Scholar
  101. Yu BJ, Sung BH, Koob MD, Lee CH, Lee JH, Lee WS, Kim MS, Kim SC (2002) Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat Biotechnol 20:1018–1023CrossRefPubMedGoogle Scholar
  102. Yukawa H (2002) In: 2nd Frontier of Microbio-Technology Environmentally Friendly for the Earth and Human, Kyoto, Japan, 16 December 2002, p 20Google Scholar
  103. Zhang Y-X, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayré SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Tokyo Research LaboratoriesKyowa Hakko KogyoTokyoJapan
  2. 2.XanagenKanagawaJapan

Personalised recommendations