Applied Microbiology and Biotechnology

, Volume 63, Issue 4, pp 452–459 | Cite as

Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons

Original Paper

Abstract

Polycyclic aromatic hydrocarbon (PAHs)-degrading bacteria may enhance the bioavailability of PAHs by excreting biosurfactants, by production of extracellular polymeric substances, or by forming biofilms. We tested these hypotheses in pure cultures of PAHs-degrading bacterial strains. Most of the strains did not substantially reduce the surface tension when grown on PAHs in liquid shaken cultures. Thus, pseudo-solubilization of PAHs in biosurfactant micelles seems not to be a general strategy for these isolates to enhance PAHs-bioavailability. Three semi-colloid Sphingomonas polysaccharides all increased the solubility of PAHs (Gellan 1.3- to 5.4-fold, Welan 1.8- to 6.0-fold and Rhamsan 2.4- to 9.0-fold). The increases were most pronounced for the more hydrophobic PAHs. The polysaccharide-sorbed PAHs were bioavailable. Mineralization rates of 9-[14C]-phenanthrene and 3-[14C]-fluoranthene by Sphingobium EPA505, were similar with and without sphingans, indicating that mass-transfer rates from PAHs crystals to the bulk liquid were unaffected by the polysaccharides. Biofilm formation on PAHs crystals may favor the diffusive mass transfer of PAHs from crystals to the bacterial cells. A majority of the PAHs-degraders tested formed biofilms in microtiter wells coated with PAHs crystals. For strains capable of growing on different PAHs; the more soluble the PAHs, the lower the percentage of cells attached. Biofilm formation on PAHs-sources was the predominant mechanism among the tested bacteria to overcome mass transfer limitations when growing on poorly soluble PAHs.

References

  1. Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier Alasan. Appl Environ Microbiol 65:2697–2702PubMedGoogle Scholar
  2. Bastiaens L, Springael D, Wattiau P, Harms H, deWachter R, Verachtert H, Diels L (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAHs)-degrading bacteria using PAHs-sorbing carriers. Appl Environ Microbiol 66:1834–1843PubMedGoogle Scholar
  3. Bosma TNP, Middeldorp PJM, Schraa G, Zender AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31:248–252CrossRefGoogle Scholar
  4. Chandrasekaran R, Radha A (1995) Molecular architectures and functional properties of gellan gum and related polysaccharides. Trends Food Sci Technol 6:143–148CrossRefGoogle Scholar
  5. Cooper DG, Zaijic JE (1980) Surface active compounds from microorganisms. Appl Microbiol 26:229–253Google Scholar
  6. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64PubMedGoogle Scholar
  7. Déziel E, Paquette G, Villemur R, Lepine F, Bisaillon JG (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 62:1908–1912Google Scholar
  8. Dohse DM, Lion LW (1994) Effect of microbial polymers on the sorption and transport of phenanthrene in a low-carbon sand. Environ Sci Technol 28:541–548Google Scholar
  9. Goodfellow M (1992) In: Balows A, Trüper HG, Dworkin M, Harder W, Sleifer KH (eds) The family Nocardiaceae. The prokaryotes, 2nd edn. Springer, New York Berlin Heidelberg, pp 1188–1213Google Scholar
  10. Guerin WF, Boyd SA (1992) Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl Environ Microbiol 58:1142–1152PubMedGoogle Scholar
  11. Harms H, Bosma TNP (1997) Mass transfer limitation of microbial growth and pollutant degradation. J Ind Microbiol 18:97–105CrossRefGoogle Scholar
  12. Ho Y, Jackson M, Yang Y, Mueller JG, Pritchard PH (2000) Characterization of fluoranthene- and pyrene-degrading bacteria isolated from PAHs-contaminated soils and sediments and comparison of several Sphingomonas spp. J Ind Microbiol Biotechnol 2:100–112CrossRefGoogle Scholar
  13. Horowitz S, Gilbert JN, Griffin WM (1990) Isolation and characterization of a surfactant produced by Bacillus licheniformis 86. J Ind Microbiol 6:243–248Google Scholar
  14. Itoh S, Suzuki T (1972) Effect of rhamnolipids on growth of a Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability. Agric Biol Chem 36:2233–2235Google Scholar
  15. Johnsen AR, Hausner M, Schnell A, Wuertz S (2000) Evaluation of fluorescently labelled lectins for noninvasive localization of extracellular polymeric substances in Sphingomonas biofilms. Appl Environ Microbiol 66:3487–3491CrossRefPubMedGoogle Scholar
  16. Johnsen AR, Bendixen K, Karlson U (2002a) Detection of microbial growth on PAHs in microtiter plates using the respiration indicator WST-1. Appl Environ Microbiol 68:2683–2689CrossRefPubMedGoogle Scholar
  17. Johnsen AR, Winding A, Karlson U, Roslev P (2002b). Linking of micro-organisms to phenanthrene metabolism in soil by analysis of 13C-labelled cell-lipids. Appl Environ Microbiol 68:6106–6113CrossRefGoogle Scholar
  18. Johnsen K, Andersen S, Jacobsen CS (1996) Phenotypic and genotypic characterization of phenanthrene-degrading fluorescent Pseudononas biovars. Appl Environ Microbiol 62:3818–3825PubMedGoogle Scholar
  19. Kästner M, Breuer-Jammali M, Mahro B (1994) Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic hydrocarbons (PAHs). Appl Microbiol Biotechnol 41:267–273CrossRefGoogle Scholar
  20. Kästner M, Breuer-Jammali M, Mahro B (1998) Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAHs-degrading bacteria introduced into soil. Appl Environ Microbiol 64:359–362PubMedGoogle Scholar
  21. Kawahara K, Seydel U, Matsuura M, Danbara H, Rietschel ET, Zaehringer U (1991) Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis. FEBS Lett 292:107–110CrossRefPubMedGoogle Scholar
  22. Kawasaki S, Moriguchi R, Sekiya K, Nakai T, Ono E, Kume K, Kawahara K (1994) The cell-envelope structure of the lipopolysaccharide-lacking Gram-negative bacterium Sphingomonas paucimobilis. J Bacteriol 176:284–290PubMedGoogle Scholar
  23. Kelley I, Freeman JP, Evans FE, Cerniglia CE (1993) Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 59:800–806PubMedGoogle Scholar
  24. Mueller JG, Chapman PJ, Pritchard PH (1989) Action of a fluoranthene-utilizing bacterial community on polycyclic aromatic hydrocarbon components of creosote. Appl Environ Microbiol 55:3085–3090Google Scholar
  25. Mueller JG, Chapman PJ, Blattmann BO, Pritchard PH (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl Environ Microbiol 56:1079–1086PubMedGoogle Scholar
  26. Mueller JG, Devereux R, Santavy DL, Lantz SE, Willis SG, Pritchard PH (1997) Phylogenetic and physiological comparisons of PAHs-degrading bacteria from geographically diverse soils. Antonie Van Leeuwenhoek 71:329–343CrossRefPubMedGoogle Scholar
  27. Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166PubMedGoogle Scholar
  28. Oberbremer A, Müller-Hurtig R (1989) Aerobic stepwise hydrocarbon degradation and formation of biosurfactants by an original soil population in a stirred reactor. Appl Microbiol Biotechnol 31:582–586Google Scholar
  29. Pollock TJ (1993) Gellan-related polysaccharides and the genus Sphingomonas. J Gen Microbiol 139:1939–1955Google Scholar
  30. Ron EZ, Rosenberg E (2001) Natural role of biosurfactants. Environ Microbiol 3:229–236CrossRefPubMedGoogle Scholar
  31. Späth R, Wuertz S (1998) Sorption properties of biofilms. Water Sci Technol 37:207–210CrossRefGoogle Scholar
  32. Stelmark PL, Gray MR, Picard MA (1999) Bacterial adhesion to soil contaminants in the presence of surfactants. Appl Environ Microbiol 65:163–168PubMedGoogle Scholar
  33. Takeuchi M, Hamana K Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and the three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomi analyses. Int J Syst Evol Microbiol 51:1405–1417PubMedGoogle Scholar
  34. Van Dyke MI, Couture P, Brauer M, Lee H, Trevors JT (1993) Pseudomonas aeruginosa UG2 Rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Can J Microbiol 39:1071–1078PubMedGoogle Scholar
  35. Van Oss CJ (1995) Hydrophobicity of biosurfaces—origin, quantitative determination and interaction energies. Colloid Surf B 5:91–110Google Scholar
  36. Volkering F, Breure AM, Sterkenburg A, van Andel JG (1992) Microbial degradation of polycyclic aromatic hydrocarbons: Effect of substrate availability on bacterial growth kinetics. Appl Microbiol Biotechnol 36:548–552Google Scholar
  37. Volkering F, Breure AM, van Andel JG, Rulkens WH (1995) Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 61:1699–1705Google Scholar
  38. Volkering F, Breure AM, Rulkens WH (1998) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417CrossRefGoogle Scholar
  39. Wick LY, Colangelo T, Harms H (2001) Kinetics of mass-transfer limited bacterial growth on solid PAHs. Environ Sci Technol 35:354–361CrossRefPubMedGoogle Scholar
  40. Wick LY, Ruiz de Munain A, Springael D, Harms H (2002) Responses of Mycobacterium sp. 501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58:378–385CrossRefPubMedGoogle Scholar
  41. Willumsen PA, Arvin E (1999) Kinetics of degradation of surfactant-solubilized fluoranthene by a Sphingomonas paucimobilis. Environ Sci Technol 33:2571–2578Google Scholar
  42. Willumsen PA, Karlson U (1997) Screening of bacteria, isolated from PAHs-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 7:415–423Google Scholar
  43. Willumsen PA, Karlson U, Pritchard PH (1998) Response of fluoranthene-degrading bacteria to surfactants. Appl Microbiol Biotechnol 50:475–483Google Scholar
  44. Willumsen PA, Karlson U, Stakebrandt E, Kroppenstedt RM (2001) Mycobacterium frederiksbergense sp. nov., a novel polycyclic aromatic hydrocarbon-degrading Mycobacterium species. Intl J Syst Evol Microbiol 51:1715–1722Google Scholar
  45. Wolfaardt GM (1995) Bioaccumulation of the herbicide diclofop in extracellular polymers and its utilization by a biofilm community during starvation. Appl Environ Microbiol 61:152–158Google Scholar
  46. Wolfaardt GM, Lawrence JR (1998) In situ characterization of biofilm exopolymers involved in the accumulation of chlorinated organics. Microb Ecol 35:213–223CrossRefPubMedGoogle Scholar
  47. Wolfaardt GM, Lawrence JR, Headley JV, Robarts RD, Caldwell DE (1994) Microbial exopolymers provide a mechanism for bioaccumulation of contaminants. Microb Ecol 27:279–291Google Scholar
  48. Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713PubMedGoogle Scholar
  49. Zhang Y, Maier WJ, Miller RM (1997) Effects of rhamnolipids on the dissolution, bioavailability and biodegradation of phenanthrene. Environ Sci Technol 31:2211–2217CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Environmental Chemistry and Microbiology National Environmental Research InstituteRoskildeDenmark

Personalised recommendations