Advertisement

Applied Microbiology and Biotechnology

, Volume 61, Issue 4, pp 366–373 | Cite as

Pseudomonas putida as the dominant toluene-degrading bacterial species during air decontamination by biofiltration

  • S. Roy
  • J. Gendron
  • M.-C. Delhoménie
  • L. Bibeau
  • M. Heitz
  • R. BrzezinskiEmail author
Original Paper

Abstract.

The microbial communities established in three laboratory-scale compost matrix biofilters fed with toluene were characterized. The biofilters were operated for 7 weeks at inlet concentrations of toluene ranging over 250–500 ppm with daily irrigation, using a nutrient solution containing variable concentrations of nitrogen, supplied as urea, and other inorganic salts. The indigenous microflora of the compost included toluene-degrading species, making inoculation unnecessary. The numerically predominant toluene-degrading strains were isolated from the most diluted positive wells of most-probable-number counts on mineral medium with toluene as sole carbon source and identified by rRNA 16S gene sequencing. On the basis of sequence similarity, all the isolated strains were assigned to the species Pseudomonas putida, although some variations were observed in their respective sequences. It is concluded that the mode of biofilter operation including a daily supply of non-carbon nutrients created an environment favoring the constant numerical predominance of this fast-growing toluene-degrading species.

Keywords

Removal Efficiency Nutrient Solution Pseudomonas Putida Microbial Count Elimination Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements.

This project was supported by a strategic research grant from the Natural Sciences and Engineering Research Council of Canada to M.H. and R.B. We express our gratitude to Ecosphera (Fleurimont, Qc., Canada) and Outarde Environnement (Montréal, Qc., Canada) for their participation in this project. We thank Paulina Drobnik for technical support.

References

  1. Acuña ME, Perez F, Auria R, Revah S (1999) Microbiological and kinetic aspects of a biofilter for the removal of toluene from waste gases. Biotechnol Bioeng 63:175–184CrossRefPubMedGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  3. Andrews JH, Harris RF (1986) r- and K-selection and microbial ecology. Adv Microb Ecol 9:99–147Google Scholar
  4. Delhoménie M-C, Bibeau L, Gendron J, Brzezinski R, Heitz M (2001) Toluene removal by biofiltration: influence of the nitrogen concentration on operational parameters. Ind Eng Chem Res 40:5405–5414CrossRefGoogle Scholar
  5. Deshusses MA, Johnson CT (2000) Development and validation of a simple protocol to rapidly determine the performance of biofilters for VOC treatment. Environ Sci Technol 34:461–467CrossRefGoogle Scholar
  6. Dorsch M, Stackebrandt E (1992) Some modifications in the procedure of direct sequencing of PCR amplified 16S rRNA. J Microbiol Methods 16:271–279Google Scholar
  7. Engesser K-H, Plaggemeier T (2000) Microbiological aspects of biological waste gas purification. In: Klein J, Winter J (eds) Environmental processes III. (Biotechnology, vol 11c) Wiley–VCH, Weinheim, pp 275–302Google Scholar
  8. Felsenstein J (1989) PHYLIP—phylogeny inference package (ver 3.2). Cladistics 5:164–166Google Scholar
  9. Frothingham R, Allen RL, Wilson KH (1991) Rapid 16S ribosomal DNA sequencing from a single colony without DNA extraction or purification. Biotechniques 11:40–44PubMedGoogle Scholar
  10. Hirsh CF, Sigmund JM (1995) Use of polymerase chain reaction (PCR) fingerprinting to differentiate bacteria for microbial product screening. J Ind Microbiol 15:85–93PubMedGoogle Scholar
  11. Hong MY, Shin PK, Bae HK, Park HI, Kim MN (2000) Changes of microbial populations during treatment of high concentration of toluene. In: Air and Waste Management Association (ed) Proc Air Waste Manag Assoc Annu Conf, vol 93. Air and Waste Management Association, Pittsburgh (CD-ROM)Google Scholar
  12. Jorio H, Heitz M (1999) Traitement de l'air par biofiltration. Can J Civil Eng 26:402–424CrossRefGoogle Scholar
  13. Jorio H, Kiared K, Brzezinski R, Leroux A, Viel G, Heitz M (1998) Treatment of air polluted with high concentrations of toluene and xylene in a pilot scale biofilters. J Chem Technol Biotechnol 73:183–196CrossRefGoogle Scholar
  14. Juteau P, Larocque R, Rho D, LeDuy A (1999) Analysis of the relative abundance of different types of bacteria capable of toluene degradation in a compost biofilters. Appl Microbiol Biotechnol 52:863–868PubMedGoogle Scholar
  15. Marsh R (1994) Biofiltration for emission abatement. Eur Coatings J 7/8:528–536Google Scholar
  16. Menig H, Krill H, Jäschke T (1997) Kosten und Effizienz biologisher Verfahren im Vergleich zu anderen Abluftreinigungssystemen. In: Prins WL, Ham J van (eds) Proc Biol Waste Gas Clean Symp. VDI Verlag, Maastricht, pp 27–58Google Scholar
  17. Moretti EC, Mukhopadhyay N (1993) VOC control: current practices and future trends. Chem Eng Prog 89:20–27Google Scholar
  18. Oh YS, Bartha R (1997) Construction of a bacterial consortium for the biofiltration of benzene, toluene and xylene emissions. World J Microbiol Biotechnol 13:627–632Google Scholar
  19. Pedersen AR, Møller S, Molin S, Arvin E (1997) Activity of toluene-degrading Pseudomonas putida in the early growth phase of a biofilm for waste gas treatment. Biotechnol Bioeng 54:131–141CrossRefGoogle Scholar
  20. Ramirez-Lopez EM, Montillet A, Comiti J, Le Cloirec P (2000) Biofiltration of volatile organic compounds—application to air treatment. Water Sci Technol 41:183–190Google Scholar
  21. Rho D (2000) La bioépuration de l'air, biofiltres et biolaveurs: un univers à la rencontre de la microbiologie et de l'ingénierie. Vecteur Environ 33:22–31Google Scholar
  22. Roy S (2000) Évaluation et stimulation du potentiel biodégradateur de la microflore du sol dans les cours de stockage de bois traité au pentachlorophénol. PhD thesis. Université de Sherbrooke, Sherbrooke, Qc.Google Scholar
  23. Smith FL, Sorial GA, Suidan MT, Breen AW, Biswas P, Brenner RC (1996) Development of two biomass control strategies for extended, stable operation of highly efficient biofilters with high toluene loadings. Environ Sci Technol 30:1744–1751Google Scholar
  24. Stackebrandt E, Liesack W, Webb R, Witt D (1991) Towards a molecular identification of Streptomyces species in pure culture and in environmental samples. Actinomycetes 2:54–61Google Scholar
  25. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedGoogle Scholar
  26. Villaverde S, Fernández-Polanco F (1999) Spatial distribution of respiratory activity in Pseudomonas putida 54G biofilms degrading volatile organic compounds (VOC). Appl Microbiol Biotechnol 51:382–387CrossRefPubMedGoogle Scholar
  27. Williams PA, Sayers JR (1994) The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas. Biodegradation 5:195–217PubMedGoogle Scholar
  28. Wrenn BA, Venosa AD (1996) Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure. Can J Microbiol 42:252–258PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • S. Roy
    • 1
    • 3
  • J. Gendron
    • 1
  • M.-C. Delhoménie
    • 2
  • L. Bibeau
    • 2
  • M. Heitz
    • 2
  • R. Brzezinski
    • 1
    Email author
  1. 1.Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des SciencesUniversité de SherbrookeSherbrookeCanada
  2. 2.Département de Génie Chimique, Faculté de GénieUniversité de SherbrookeSherbrookeCanada
  3. 3.Biotechnology Research Institute–Canadian National Research CouncilMontréalCanada

Personalised recommendations