Advertisement

Applied Microbiology and Biotechnology

, Volume 61, Issue 2, pp 157–162 | Cite as

Brettanomyces bruxellensis: effect of oxygen on growth and acetic acid production

  • M. G. Aguilar Uscanga
  • M.-L. Délia
  • P. Strehaiano
Original Paper

Abstract

The influence of the oxygen supply on the growth, acetic acid and ethanol production by Brettanomyces bruxellensis in a glucose medium was investigated with different air flow rates in the range 0–300 l h–1 (0–0.5 vvm). This study shows that growth of this yeast is stimulated by moderate aeration. The optimal oxygen supply for cellular synthesis was an oxygen transfer rate (OTR) of 43 mg O2 l–1h–1. In this case, there was an air flow rate of 60 l h–1 (0.1 vvm). Above this value, the maximum biomass concentration decreased. Ethanol and acetic acid production was also dependent on the level of aeration: the higher the oxygen supply, the greater the acetic acid production and the lower the ethanol production. At the highest aeration rates, we observed a strong inhibition of the ethanol yield. Over 180 l h–1 (0.3 vvm, OTR =105 mg O2 l–1 h–1), glucose consumption was inhibited and a high concentration of acetic acid (6.0 g l–1) was produced. The ratio of "ethanol + acetic acid" produced per mole of consumed glucose using carbon balance calculations was analyzed. It was shown that this ratio remained constant in all cases. This makes it possible to establish a stoichiometric equation between oxygen supply and metabolite production.

Keywords

Fermentation Ethanol Production Aeration Rate Alcoholic Fermentation Oxygen Transfer Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors thanks Patricia M. Hayward Jones, M.Sc. for the critical reading of the manuscript for English language.

References

  1. Blondin B, Ratomahenina R, Arnaud A, Galzy P (1982) A study of cellobiose fermentation by a Dekkera strain. Biotechnol Bioeng 24:2031–2037Google Scholar
  2. Carrascosa JM, Viguera MD, Nuñez de Castro I, Scheffers WA (1981) Metabolism of acetaldehyde and Custer effect in the yeast Brettanomyces abstinens. Antonie Van Leeuwenhoek 47:209–215PubMedGoogle Scholar
  3. Ciani M, Ferraro L (1997) Role of oxygen on acetic acid production by Brettanomyces/Dekkera in winemaking. J Sci Food Agric 75:489–495CrossRefGoogle Scholar
  4. Cooney CL, Wang HY, Wang DIC (1977) Computer-aided material balancing for prediction of fermentation parameters. Biotechnol Bioeng 19:55–67PubMedGoogle Scholar
  5. Délia-Dupuy ML, De Miniac M, Phowchinda O, Strehaiano P (1995) Contamination par les levures Brettanomyces dans les fermentations alcooliques. Microbiol Aliments Nutr 13:349–359Google Scholar
  6. De Miniac M (1989) Contamination des fermentations alcooliques industrielles par les levures du genre Brettanomyces. I.A.A. July/August:559–563Google Scholar
  7. Gaunt DM, Degn H, Lloyd D (1988) The influence of oxygen and organic hydrogen acceptors on glycolytic carbon dioxide production in Brettanomyces anomalus. Yeast 4:249–255Google Scholar
  8. Moo Young M, Blanch HW (1987) Transport phenomena and bioreactor design. In: Bulock J, Kristiansen B (eds) Basic biotechnology. Academic Press, London, pp 148–151Google Scholar
  9. Pampulha ME, Loureiro-Dias MC (1989) Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Appl Microbiol Biotechnol 31:547–550Google Scholar
  10. Peynaud E, Domercq S (1956) Sur les Brettanomyces isolés de raisins et de vins. Arch Microbiol 24:266–280Google Scholar
  11. Phowchinda O, Aguilar Uscanga MG, Délia ML, Vidal F, Strehaiano P (1997) Rôle de l'acide acétique dans la concurrence entre deux genres levuriens en fermentation industrielle. Comm. 6ème Congrès Français de Génie des Procédés, PARIS, (France), 24–26 September 1997. In: Bimbenet JJ, Muratet (eds) Génie de la Réaction en Microbiologie et Biochimie, Collection Récents Progrès en Génie des Procédés, Lavoisier, Paris, 11(57):79–84Google Scholar
  12. Rasmussen JE, Schultz E, Snyder RE, Jones RS, Smith CR (1995) Acetic acid as a causative agent in producing struc fermentations. Am J Enol Vitic 46:278–280Google Scholar
  13. Scheffers WA (1979) Anaerobic inhibition in yeasts (Custers effect). Antonie Van Leeuwenhoek 45:150Google Scholar
  14. Scheffers WA, Wiken TO (1969) The Custer effect (negative Pasteur effect) as a diagnostic criterion for the genus Brettanomyces. Antonie Van Leeuwenhoek 35 [Suppl] Yeast Symposium 1969Google Scholar
  15. Strehaiano P (1984) Phénomènes d'inhibition et fermentation alcoolique. Thèse d'Etat de l'Institut National Polytechnique de Toulouse, FranceGoogle Scholar
  16. Taherzadeh MJ, Niklasson C, Lidén G (1997) Acetic acid—friend or foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae? Chem Eng Sci 52:2653–2659CrossRefGoogle Scholar
  17. Van Dijken JP, Scheffers WA (1984) Studies on alcoholic fermentation in yeasts. In: Houwink EH, Van der Meer RR (eds) Innovations in biotechnology. Elsevier, Amsterdam, pp 497–506Google Scholar
  18. Wijsman MR, Van Dijken JP, Scheffers WA (1984a) Effect of oxygen on growth and metabolite production by the yeast Brettanomyces intermedius. Antonie Van Leeuwenhoek 50:112Google Scholar
  19. Wijsman MR, Van Dijken JP, Van Kleeff BHA, Scheffers WA (1984b) Inhibition of fermentation and growth in batch cultures of the yeast Brettanomyces intermedius upon a shift from aerobic to anaerobic conditions (Custer effect). Antonie Van Leeuwenhoek 50:183–192PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • M. G. Aguilar Uscanga
    • 2
  • M.-L. Délia
    • 1
  • P. Strehaiano
    • 1
  1. 1.ENSIACET, Laboratoire de Génie ChimiqueUMR-CNRS 5503Toulouse cedex 4France
  2. 2.Depto. de Ing. Química y Bioquímica / UNIDAInstituto Tecnológico de VeracruzVeracruzMexico

Personalised recommendations