Applied Microbiology and Biotechnology

, Volume 61, Issue 1, pp 1–9 | Cite as

Termite symbiotic systems: efficient bio-recycling of lignocellulose

  • M. OhkumaEmail author


Termites thrive in great abundance in terrestrial ecosystems and play important roles in biorecycling of lignocellulose. Together with their microbial symbionts, they efficiently decompose lignocellulose. In so-called lower termites, a dual decomposing system, consisting of the termite's own cellulases and those of its gut protists, was elucidated at the molecular level. Higher termites degrade cellulose apparently using only their own enzymes, because of the absence of symbiotic protists. Termite gut prokaryotes efficiently support lignocellulose degradation. However, culture-independent molecular studies have revealed that the majority of these gut symbionts have not yet been cultivated, and that the gut symbiotic community shows a highly structured spatial organization. In situ localization of individual populations and their functional interactions are important to understand the nature of symbioses in the gut. In contrast to cellulose, lignin degradation does not appear to be important in the gut of wood-feeding termites. Soil-feeding termites decompose humic substances in soil at least partly, but little is known about the decomposition. Fungus-growing termites are successful in the almost complete decomposition of lignocellulose in a sophisticated cooperation with basidiomycete fungi cultivated in their nest. A detailed understanding of efficient biorecycling systems, such as that for lignocellulose, and the symbioses that provide this efficiency will benefit applied microbiology and biotechnology.


Lignin Cellulase Termite Species Acetogenesis Methanobrevibacter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work of my group was supported by grants to the Bioarchitect Research Program and the Eco Molecular Science Research Program from RIKEN.


  1. Abe T, Bignell DE, Higashi M (2000) Termites: evolution, sociality, symbiosis, ecology. Kluwer, DordrechtGoogle Scholar
  2. Bauer S, Tholen A, Overman J, Brune A (2000) Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood- and soil-feeding termites by molecuar and culture-dependent techniques. Arch Microbiol 173:126–137CrossRefPubMedGoogle Scholar
  3. Berchtold M, König H (1995) Phylogenetic position of the two uncultivated trichomonads Pentatrichomonoides scora Kirby and Metadevescovina extranea Kirby from the hindgut of the termite Mastotermes darwiniensis Froggatt. Syst Appl Microbiol 18:567–573Google Scholar
  4. Berchtold M, König H (1996) Phylogenetic analysis and in situ identification of uncultivated spirochetes from the hindgut of the termite Mastotermes darwiniensis. Syst Appl Microbiol 19:66–73Google Scholar
  5. Berchtold M, Chatzinotas A, Schönhuber W, Brune A, Amann R, Hahn D, König H (1999) Differential enumeration and in situ localization of microorganisms in the hindgut of the lower termite Mastotermes darwiniensis by hybridization with rRNA-targeted probes. Arch Microbiol 172:407–416CrossRefPubMedGoogle Scholar
  6. Bignell DE, Eggleton P (1995) On the elevated intestinal pH of higher termites (Isoptera: Termitidae). Insectes Soc 42:57–69Google Scholar
  7. Brauman A, Kane MD, Labat M, Breznak JA (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387Google Scholar
  8. Brauman A, Dore J, Eggleton P, Bignell DE, Breznak JA, Kane MD (2001) Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol Ecol 35:27–36CrossRefPubMedGoogle Scholar
  9. Breznak JA (1994) Acetogenesis from carbon dioxide in termite guts. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 303–330Google Scholar
  10. Breznak JA (2002) A need to retrieve the not-yet-cultured majority. Environ Microbiol 4:4–5CrossRefPubMedGoogle Scholar
  11. Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487Google Scholar
  12. Brune A (1998) Termite guts: the world's smallest bioreactors. Trends Biotechnol 16:16–21Google Scholar
  13. Brune A, Kühl M (1996) pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J Insect Physiol 42:1121–1127Google Scholar
  14. Brune A, Friedrich M (2000) Microecology of the termite gut: structure and function on a microscale. Curr Opin Microbiol 3:263–269CrossRefPubMedGoogle Scholar
  15. Brune A, Miambi E, Breznak JA (1995) Roles of oxygen and the intestinal microflora in the metabolism of lignin-derived phenylpropanoids and other monoaromatic compounds by termites. Appl Environ Microbiol 61:2688–2695Google Scholar
  16. Dacks JB, Silberman JD, Simpson AGB, Moriya S, Kudo T, Ohkuma M, Redfield RJ (2001) Oxymonads are closely related to the excavate taxon Trimastix. Mol Biol Evol 18:1034–1044PubMedGoogle Scholar
  17. Dolan MF (2001) Speciation of termite gut protists: the role of bacterial symbionts. Int Microbiol 4:203–208PubMedGoogle Scholar
  18. Dyer BD (2002) Termite hindgut symbionts. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer , Dordrecht, pp 703–713Google Scholar
  19. Friedrich MW, Schmitt-Wagner D, Lueders T, Brune A (2001) Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil- feeding termite Cubitermes orthognathus. Appl Environ Microbiol 67:4880–4890CrossRefPubMedGoogle Scholar
  20. Fröhlich J, König H (1999a) Ethidium bromide: a fast fluorescent staining procedure for the detection of symbiotic partnership of flagellates and prokaryotes. J Microbiol Methods 35:121–127CrossRefPubMedGoogle Scholar
  21. Fröhlich J, König H (1999b) Rapid isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator. Syst Appl Microbiol 22:249–157PubMedGoogle Scholar
  22. Gerbod D, Edgcomb VP, Nöel C, Delgado-Viscogliosi P, Viscogliosi E (2000) Phylogenetic position of parabasalid symbionts from the termite Calotermes flavicollis based on small subunit rRNA sequences. Int Microbiol 3:165–172PubMedGoogle Scholar
  23. Hinze B, Crailsheim K, Leuthold RH (2002) Polyethism in food processing and social organisation in the nest of Macrotermes bellicosus (Isoptera, Termitidae). Insectes soc 49:31–37CrossRefGoogle Scholar
  24. Hopkins DW, Chudek JA, Bignell DE, Frouz J, Webster EA, Lawson T (1998) Application of 13C NMR to investigate the transformations and biodegradation of organic materials by wood- and soil-feeding termites, and a coprophagous litter-dwelling dipteran larva. Biodegradation 9:423–431CrossRefPubMedGoogle Scholar
  25. Hyodo F, Inoue T, Azuma J-I, Tayasu I, Abe T (2000) Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biol Biochem 32:653–658CrossRefGoogle Scholar
  26. Iida T, Ohkuma M, Ohtoko K, Kudo T (2000) Symbiotic spirochetes in the termite hindgut: phylogenetic identification of ectosymbiotic spirochetes of oxymonad protists. FEMS Microbiol Ecol 34:17–26CrossRefPubMedGoogle Scholar
  27. Inoue T, Murashima K, Azuma J-I, Sugimoto A, Slaytor M (1997) Cellulose and xylan utilization in the lower termite Reticulitermes speratus. J Insect Physiol 43:235–242CrossRefGoogle Scholar
  28. Itakura S, Tanaka H, Enoki A (1997) Distribution of cellulases, glucose and related substances in the body of Coptotermes formosanus. Mater Organismen 31:17–29Google Scholar
  29. Ji R, Kappler A, Brune A (2000) Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites. Soil Biol Biochem 32:1281–1291CrossRefGoogle Scholar
  30. Kappler A, Brune A (1999) Influence of gut alkalinity and oxygen status on mobilization and size-class distribution of humic acids in the hindgut of soil-feeding termites. Appl Soil Ecol 13:219–229CrossRefGoogle Scholar
  31. Keeling PJ, Poulsen N, McFadden GI (1998) Phylogenetic diversity of parabasalian symbionts from termites, including the phylogenetic position of Pseudotrypanosoma and Trichonympha. J Eukaryot Microbiol 45:643–650PubMedGoogle Scholar
  32. König H, Fröhlich J, Berchtold M, Wenzel M (2002) Diversity and microhabitats of the hindgut flora of termites. Recent Res Devel Microbiol 6:125–156Google Scholar
  33. Kosono S, Maeda M, Fuji F, Arai H, Kudo T (1997) Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation. Appl Environ Microbiol 63:3282–3285PubMedGoogle Scholar
  34. Kudo T, Ohkuma M, Moriya S, Noda S, Ohtoko K (1998) Molecular phylogenetic identification of the intestinal anaerobic microbial community in the hindgut of the termite, Reticulitermes speratus, without cultivation. Extremophiles 2:155–161CrossRefPubMedGoogle Scholar
  35. Kuhnigk T, König H (1997) Degradation of dimeric lignin model compounds by aerobic bacteria isolated from the hindgut of xylophagous termites. J Basic Microbiol 37:205–211PubMedGoogle Scholar
  36. Kuhnigk T, Borst E-M, Ritter A, Kämpfer P, Graf A, Hertel H, König H (1994) Degradation of lignin monomers by the hindgut flora of xylophagous termites. Syst Appl Microbiol 17:76–85Google Scholar
  37. Kuhnigk T, Branke J, Krekeler D, Cypionka H, König H (1996) A feasible role of sulfate-reducing bacteria in the termite gut. Syst Appl Microbiol 19:139–149Google Scholar
  38. Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov and Methanobrevibacter curvagus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631PubMedGoogle Scholar
  39. Leadbetter JR, Crosby LD, Breznak A (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169:287–292CrossRefPubMedGoogle Scholar
  40. Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–689CrossRefPubMedGoogle Scholar
  41. Lilburn TG, Schmidt TM, Breznak JA (1999) Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1:331–345PubMedGoogle Scholar
  42. Lilburn TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JR, Breznak JA (2001) Nitrogen fixation by symbiotic and free-living spirochetes. Science 292:2495–2498CrossRefPubMedGoogle Scholar
  43. Lo N, Tokuda G, Watanabe H, Rose H, Slaytor M, Maekawa K, et al (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804CrossRefPubMedGoogle Scholar
  44. Maeda M, Chung S-Y, Song E, Kudo T (1995) Multiple genes encoding 2,3-dihydroxybiphenyl 1,2-dioxygenase in the gram-positive polychlorinated biphenyl-degrading bactterium Rhodococcus erythropolis TA421, isolated from a termite ecosystem. Appl Environ Microbiol 61:549–555PubMedGoogle Scholar
  45. Moriya S, Tanaka K, Ohkuma M, Sugano S, Kudo T (2001) Diversification of the microtubule system in the early stage of eukaryote evolution: elongation factor 1α and α-tubulin protein phylogeny of termite symbiotic oxymonad and hypermastigote protists. J Mol Evol 51:6–16Google Scholar
  46. Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma J-I (2002) Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem Mol Biol 32:777–784CrossRefPubMedGoogle Scholar
  47. Noda S, Ohkuma M, Usami R, Horikoshi K, Kudo T (1999) Culture-independent characterization of a gene responsible for nitrogen fixation in the symbiotic microbial community in the gut of the termite Neotermes koshunensis. Appl Environ Microbiol 65:4935–4942PubMedGoogle Scholar
  48. Noda S, Ohkuma M, Kudo T (2002) Nitrogen fixation genes expressed in the symbiotic microbial community in the gut of the termite Coptotermes formosanus. Microb Environ 17:139–143CrossRefGoogle Scholar
  49. Ohkuma M (2002) Symbiosis in the termite gut—culture-independent molecular approaches. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer, Dordrecht, pp 717–730Google Scholar
  50. Ohkuma M, Kudo, T (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol 62:461–468PubMedGoogle Scholar
  51. Ohkuma M, Iida T, Kudo T (1999a) Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites. FEMS Microbiol Lett 181:123–129CrossRefPubMedGoogle Scholar
  52. Ohkuma M, Noda S, Kudo T (1999b) Phylogeny of symbiotic methanogenes in diverse termites. FEMS Microbiol Lett 171:147–153CrossRefPubMedGoogle Scholar
  53. Ohkuma M, Noda S, Kudo T (1999c) Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites. Appl Environ Microbiol 65:4926–4934PubMedGoogle Scholar
  54. Ohkuma M, Ohtoko K, Iida T, Tokura M, Moriya S, Usami R, Horikoshi K, Kudo T (2000) Phylogenetic identification of hypermastigotes, Pseudotrichonympha, Spirotrichonympha, Holomastigotes, and parabasalian symbionts in the hindgut of termites. J Eukaryot Microbiol 47:249–259PubMedGoogle Scholar
  55. Ohkuma M, Noda S, Hongoh Y, Kudo T (2002) Diverse bacteria related to the bacteroides subgroup of the CFB phylum within the gut symbiotic community of various termites. Biosci Biotech Biochem 66:78–84Google Scholar
  56. Ohtoko K, Ohkuma M, Moriya S, Inoue T, Usami R, Kudo T (2000) Diverse genes of cellulase homologues of glycosyl hydrolase family 45 from the symbiotic protists in the hindgut of the termite Reticulitermes speratus. Extremophiles 4: 343–349CrossRefPubMedGoogle Scholar
  57. Paster BJ, Dewhirst FE, Cooke SM, Fussing V, Poulsen LK, Breznak JA (1996) Phylogeny of not-yet-cultured spirochetes from termite guts. Appl Environ Microbiol 62:347–352PubMedGoogle Scholar
  58. Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33PubMedGoogle Scholar
  59. Prillinger H, Messner R, König H, Bauer R, Lopandic K, Molnar O, Dangel P, Weigang F, Kirisits T, Nakase T, Sigler L (1996) Yeasts associated with termites: a phenotypic and genotypic characterization and use of coevolution for dating evolutionary radiations in asco- and basidiomycetes. Syst Appl Microbiol 19:265–283Google Scholar
  60. Radek R (1999) Flagellates, bacteria and fungi associated with termites: diversity and function in nutrition. Ecotropica 5:183–196Google Scholar
  61. Rouland-Lefèvre C, Bignell DE (2002) Cultivation of symbiotic fungi by termites of the subfamily Macrotermitinae. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer , Dordrecht, pp 733-756Google Scholar
  62. Rouland-Lefèvre C, Diouf MN, Brauman A, Neyra M (2002) Phylogenetic relationships in Termitomyces (Family Agaricaceae) based on the nucleotide sequence of ITS: a first approach to elucidate the evolutionary history of the symbiosis between fungus-growing termites and their fungi. Mol Phylogenet Evol 22:423–429CrossRefPubMedGoogle Scholar
  63. Schäfer A, Konrad R, Kuhnigk T, Kämpfer P, Hertel H, König H (1996) Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol 80:471–478PubMedGoogle Scholar
  64. Schmitt-Wagner D, Brune A (1999) Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4490–4496PubMedGoogle Scholar
  65. Shinzato N, Matsumoto T, Yamaoka I, Oshima T, Yamagishi A (1999) Phylogenetic diversity of symbiotic methanogens living in the hindgut of the lower termite Reticulitermes speratus analyzed by PCR and in situ hybridization. Appl Environ Microbiol 65:837–840PubMedGoogle Scholar
  66. Shinzato N, Matsumoto T,Yamaoka I, Oshima T, Yamagishi A (2001) Methanogenic symbionts and the locality of other host lower termites. Microb Environ 16:43–47CrossRefGoogle Scholar
  67. Slaytor M (1992) Cellulose digestion in termites and cockroaches; do symbionts play a role? Comp Biochem Phys 103B:775–784Google Scholar
  68. Slaytor M, Veivers PC, Lo N (1997) Aerobic and anaerobic metabolism in the higher termite Nasutitermes walkeri (Hill). Insect Biochem Mol Biol 27:291-303CrossRefGoogle Scholar
  69. Taprab Y, Ohkuma M, Johjima T, Maeda Y, Moriya S, Inoue T, Suwanarit P, Noparatnaraporn N, Kudo T (2002) Molecular phylogeny of symbiotic basidiomycetes of fungus-growing termites in Thailand and their relationship with the host. Biosci Biotech Biochem 66:1159–1163Google Scholar
  70. Tayasu I, Inoue T, Miller LR, Sugimoto A, Takeichi S, Abe T (1998) Confirmation of soil-feeding termites (Isoptera: Termitidae: Termitinae) in Australia using stable isotope ratios. Functional Ecol 12:536–542CrossRefGoogle Scholar
  71. Tholen A, Brune A (1999) Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4497–4505PubMedGoogle Scholar
  72. Tholen A, Brune A (2000) Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ Microbiol 2:436–449CrossRefPubMedGoogle Scholar
  73. Tholen A, Schink B, Brune A (1997) The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp. FEMS Microbiol Ecol 24:137–149Google Scholar
  74. Tokuda G, Lo N, Watanabe H, Slaytor M, Matsumoto T, Noda H (1999) Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochim Biophys Acta 1447:146–159CrossRefPubMedGoogle Scholar
  75. Tokura M, Ohkuma M, Kudo T (2000) Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol Ecol 33:233–240CrossRefPubMedGoogle Scholar
  76. Varma A, Kolli BK, Paul J, Saxena S, König H (1994) Lignocellulose degradation by microorganisms from termite hills and termite guts. A survey on the present state of art. FEMS Microbiol Rev 15:9–28Google Scholar
  77. Watanabe H, Tokuda G (2001) Animal cellulases. Cell Mol Life Sci 58:1167–1178PubMedGoogle Scholar
  78. Watanabe H, Noda H, Tokuda G, Lo N (1998) A cellulase gene of termite origin. Nature 394:330–331CrossRefPubMedGoogle Scholar
  79. Wenzel M, Schönig I, Berchtold M, Kämpfer P, König H (2002) Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. J Appl Microbiol 92:32–40CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Molecular Microbial Ecology Division, Bioscience Technology CenterRIKEN and ICORPWakoJapan

Personalised recommendations