Advertisement

Strong selection of the TLR2 coding region among the Lagomorpha suggests an evolutionary history that differs from other mammals

  • Fabiana Neves
  • Ana Águeda-Pinto
  • Ana Pinheiro
  • Joana Abrantes
  • Pedro J. EstevesEmail author
Short Communication
  • 29 Downloads

Abstract

Toll-like receptors (TLRs) are one of the first lines of defense against pathogens and are crucial for triggering an appropriate immune response. Among TLRs, TLR2 is functional in all vertebrates and has high ability in detecting bacterial and viral pathogen ligands. The mammals’ phylogenetic tree of TLR2 showed longer branches for the Lagomorpha clade, raising the hypothesis that lagomorphs experienced an acceleration of the mutation rate. This hypothesis was confirmed by (i) Tajima’s test of neutrality that revealed different evolutionary rates between lagomorphs and the remaining mammals with lagomorphs presenting higher nucleotide diversity; (ii) genetic distances were similar among lagomorphs and between lagomorphs and other mammals; and (iii) branch models reinforced the existence of an acceleration of the mutation rate in lagomorphs. These results suggest that the lagomorph TLR2 has been strongly involved in pathogen recognition, which probably caused a host-pathogen arms race that led to the observed acceleration of the mutation rate.

Keywords

Lagomorphs TLR2 Evolution Mutation rate 

Notes

Funding information

This article is a result of the project AGRIGEN – NORTE-01-0145-FEDER-000007, supported by Norte Portugal Regional Operational Programme (NORTE2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). Fundação para a Ciência e Tecnologia (FCT) supported the FCT Investigator grants of P.J. Esteves (IF/00376/2015) and J. Abrantes (IF/01396/2013).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

251_2019_1110_MOESM1_ESM.pdf (207 kb)
Online Resource 1 (PDF 206 kb)
251_2019_1110_MOESM2_ESM.pdf (67 kb)
Online Resource 2 (PDF 67 kb)
251_2019_1110_MOESM3_ESM.pdf (68 kb)
Online Resource 3 (PDF 68 kb)

References

  1. Abrantes J, Areal H, Esteves PJ (2013) Insights into the European rabbit (Oryctolagus cuniculus) innate immune system: genetic diversity of the toll-like receptor 3 (TLR3) in wild populations and domestic breeds. BMC Genet 14:73Google Scholar
  2. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801Google Scholar
  3. Alcaide M, Edwards SV (2011) Molecular evolution of the toll-like receptor multigene family in birds. Mol Biol Evol 28(5):1703–1715Google Scholar
  4. Andersson DI, Jerlstrom-Hultqvist J and Nasvall J (2015) Evolution of new functions de novo and from preexisting genes. Cold Spring Harb Perspect Biol 7(6)Google Scholar
  5. Areal H, Abrantes J, Esteves PJ (2011) Signatures of positive selection in Toll-like receptor (TLR) genes in mammals. BMC Evol Biol 11:368Google Scholar
  6. Awadi A, Ben Slimen H, Smith S, Kahlen J, Makni M, Suchentrunk F (2018) Genetic diversity of the toll-like receptor 2 (TLR2) in hare (Lepus capensis) populations from Tunisia. C R Biol 341(6):315–324Google Scholar
  7. Beisswanger S, Stephan W (2008) Evidence that strong positive selection drives neofunctionalization in the tandemly duplicated polyhomeotic genes in Drosophila. Proc Natl Acad Sci U S A 105(14):5447–5452Google Scholar
  8. Brennan JJ, Gilmore TD (2018) Evolutionary origins of Toll-like receptor signaling. Mol Biol Evol 35(7):1576–1587Google Scholar
  9. Chapman JA, Flux JEC (2008) Introduction to the Lagomorpha. Lagomorph biology: evolution, ecology and conservation. In: Alves PC, Ferrand N, Hackländer K (eds) Springer, pp 1–9Google Scholar
  10. Chen C, Zibiao H, Ming Z, Shiyi C, Ruixia L, Jie W, SongJia L (2014) Expression pattern of Toll-like receptors (TLRs) in different organs and effects of lipopolysaccharide on the expression of TLR 2 and 4 in reproductive organs of female rabbit. Dev Comp Immunol 46(2):341–348Google Scholar
  11. Christin PA, Spriggs E, Osborne CP, Stromberg CAE, Salamin N, Edwards EJ (2014) Molecular dating, evolutionary rates, and the age of the grasses. Syst Biol 63(2):153–165Google Scholar
  12. Darfour-Oduro KA, Megens HJ, Roca AL, Groenen MA, Schook LB (2015) Adaptive evolution of Toll-like receptors (TLRs) in the family Suidae. PLoS One 10(4):e0124069Google Scholar
  13. Ding J, Chang TL (2012) TLR2 activation enhances HIV nuclear import and infection through T cell activation-independent and -dependent pathways. J Immunol 188(3):992–1001Google Scholar
  14. Ding YT, Zhou Q, Wang W (2012) Origins of new genes and evolution of their novel functions. Annu Rev Ecol Evol Syst 43:345–363Google Scholar
  15. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797Google Scholar
  16. Esselstyn JA, Oliveros CH, Swanson MT, Faircloth BC (2017) Investigating difficult nodes in the placental mammal tree with expanded taxon sampling and thousands of ultraconserved elements. Genome Biol Evol 9(9):2308–2321Google Scholar
  17. Esteves PJ, Abrantes J, Baldauf H-M, BenMohamed L, Chen Y, Christensen N, Gonzalez-Gallego J, Giacani L, Hu J et al (2018) The wide utility of rabbits as models of human diseases. Exp Mol Med 50(5):66Google Scholar
  18. Fontanesi L, Di Palma F, Flicek P, Smith AT, Thulin CG, Alves PC, Lagomorph Genomics Consortium (2016) LaGomiCs-Lagomorph Genomics Consortium: an international collaborative effort for sequencing the genomes of an entire mammalian order. J Hered 107(4):295–308Google Scholar
  19. Fornuskova A, Vinkler M, Pages M, Galan M, Jousselin E, Cerqueira F, Morand S, Charbonnel N, Bryja J et al (2013) Contrasted evolutionary histories of two Toll-like receptors (Tlr4 and Tlr7) in wild rodents (MURINAE). BMC Evol Biol 13:194Google Scholar
  20. Grueber CE, Wallis GP, Jamieson IG (2014) Episodic positive selection in the evolution of avian toll-like receptor innate immunity genes. PLoS One 9(3):e89632Google Scholar
  21. Guthrie VB, Masica DL, Fraser A, Federico J, Fan YF, Camps M, Karchin R (2018) Network analysis of protein adaptation: modeling the functional impact of multiple mutations. Mol Biol Evol 35(6):1507–1519Google Scholar
  22. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  23. Hug H, Mohajeri MH, La Fata G (2018) Toll-like receptors: regulators of the immune response in the human gut. Nutrients 10(2)Google Scholar
  24. Hughes AL, Piontkivska H (2008) Functional diversification of the toll-like receptor gene family. Immunogenetics 60(5):249–256Google Scholar
  25. Jann OC, Werling D, Chang JS, Haig D, Glass EJ (2008) Molecular evolution of bovine Toll-like receptor 2 suggests substitutions of functional relevance. BMC Evol Biol 8:288Google Scholar
  26. Kajikawa O, Frevert CW, Lin SM, Goodman RB, Mongovin SM, Wong V, Ballman K, Daubeuf B, Elson G, Martin TR (2005) Gene expression of Toll-like receptor-2, Toll-like receptor-4, and MD2 is differentially regulated in rabbits with Escherichia coli pneumonia. Gene 344:193–202Google Scholar
  27. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650Google Scholar
  28. Kingry LC, Petersen JM (2014) Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol 4:35Google Scholar
  29. Kumar H, Kawai T, Akira S (2009) Toll-like receptors and innate immunity. Biochem Biophys Res Commun 388(4):621–625Google Scholar
  30. Kumar S, Stecher G, Suleski M, Hedges SB (2017) TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol 34(7):1812–1819Google Scholar
  31. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549Google Scholar
  32. Lester SN, Li K (2014) Toll-like receptors in antiviral innate immunity. J Mol Biol 426(6):1246–1264Google Scholar
  33. Leulier F, Lemaitre B (2008) Toll-like receptors-taking an evolutionary approach. Nat Rev Genet 9(3):165–178Google Scholar
  34. Lewis SH, Obbard DJ (2014) Recent insights into the evolution of innate viral sensing in animals. Curr Opin Microbiol 20:170–175Google Scholar
  35. Matthee CA, van Vuuren BJ, Bell D, Robinson TJ (2004) A molecular supermatrix of the rabbits and hares (Leporidae) allows for the identification of five intercontinental exchanges during the Miocene. Syst Biol 53(3):433–447Google Scholar
  36. Melo-Ferreira J, Lemos de Matos A, Areal H, Lissovsky AA, Carneiro M, Esteves PJ (2015) The phylogeny of pikas (Ochotona) inferred from a multilocus coalescent approach. Mol Phylogenet Evol 84:240–244Google Scholar
  37. Mukherjee S, Karmakar S, Babu SP (2016) TLR2 and TLR4 mediated host immune responses in major infectious diseases: a review. Braz J Infect Dis 20(2):193–204Google Scholar
  38. Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152Google Scholar
  39. Neves F, Abrantes J, Almeida T, Costa PP, Esteves PJ (2015a) Evolutionary insights into IL17A in lagomorphs. Mediat Inflamm 2015:367670Google Scholar
  40. Neves F, Abrantes J, Almeida T, de Matos AL, Costa PP, Esteves PJ (2015b) Genetic characterization of interleukins (IL-1alpha, IL-1beta, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18) with relevant biological roles in lagomorphs. Innate Immun 21(8):787–801Google Scholar
  41. Niedcwiedzka-Rystwej P, Tokarz-Deptula B, Deptula W (2013) The role of Toll-like receptors in viral infections – selected data. Cent Eur J Immunol 38(1):118–121Google Scholar
  42. Oliveira-Nascimento L, Massari P, Wetzler LM (2012) The role of TLR2 in infection and immunity. Front Immunol 3:79Google Scholar
  43. Pinheiro A, Neves F, Lemos de Matos A, Abrantes J, van der Loo W, Mage R, Esteves PJ (2016) An overview of the lagomorph immune system and its genetic diversity. Immunogenetics 68(2):83–107Google Scholar
  44. Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci U S A 102(27):9577–9582Google Scholar
  45. Shang S, Zhong H, Wu X, Wei Q, Zhang H, Chen J, Chen Y, Tang X, Zhang H (2018) Genomic evidence of gene duplication and adaptive evolution of Toll like receptors (TLR2 and TLR4) in reptiles. Int J Biol Macromol 109:698–703Google Scholar
  46. Smith SA, Haig D, Emes RD (2014) Novel ovine polymorphisms and adaptive evolution in mammalian TLR2 suggest existence of multiple pathogen binding regions. Gene 540(2):217–225Google Scholar
  47. Tajima F (1993) Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135(2):599–607Google Scholar
  48. Tschirren B, Raberg L, Westerdahl H (2011) Signatures of selection acting on the innate immunity gene Toll-like receptor 2 (TLR2) during the evolutionary history of rodents. J Evol Biol 24(6):1232–1240Google Scholar
  49. Vinkler M, Bainova H, Bryja J (2014) Protein evolution of Toll-like receptors 4, 5 and 7 within Galloanserae birds. Genet Sel Evol 46:72Google Scholar
  50. Wertheim JO, Murrell B, Smith MD, Kosakovsky Pond SL, Scheffler K (2015) RELAX: detecting relaxed selection in a phylogenetic framework. Mol Biol Evol 32(3):820–832Google Scholar
  51. Wlasiuk G, Nachman MW (2010) Adaptation and constraint at Toll-like receptors in primates. Mol Biol Evol 27(9):2172–2186Google Scholar
  52. Wobeser G, Campbell GD, Dallaire A, McBurney S (2009) Tularemia, plague, yersiniosis, and Tyzzer’s disease in wild rodents and lagomorphs in Canada: a review. Can Vet J 50(12):1251–1256Google Scholar
  53. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591Google Scholar
  54. Zhang XY, Lei M, Xie L, Zhang CX, Zheng J, Yang C, Deng XD, Li JL, Huang DP et al (2014) Detection of polymorphisms and protein domain architectures in rabbit toll-like receptor 2. World Rabbit Sci 22(1):83–90Google Scholar
  55. Zhu ZH, Sun YN, Wang RX, Xu TJ (2013) Evolutionary analysis of TLR9 genes reveals the positive selection of extant teleosts in Perciformes. Fish Shellfish Immunol 35(2):448–457Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fabiana Neves
    • 1
  • Ana Águeda-Pinto
    • 1
  • Ana Pinheiro
    • 1
  • Joana Abrantes
    • 1
  • Pedro J. Esteves
    • 1
    • 2
    • 3
    Email author
  1. 1.CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório AssociadoUniversidade do Porto, Campus Agrário de VairãoVairãoPortugal
  2. 2.Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  3. 3.CITS - Centro de Investigação em Tecnologias de SaúdeCESPUGandraPortugal

Personalised recommendations