Advertisement

miR-455-5p downregulation promotes inflammation pathways in the relapse phase of relapsing-remitting multiple sclerosis disease

  • Shukoofeh Torabi
  • Mona Tamaddon
  • Mojtaba Asadolahi
  • Gelareh Shokri
  • Rezvan Tavakoli
  • Nooshin Tasharrofi
  • Reza Rezaei
  • Vahid Tavakolpour
  • Hossein Sazegar
  • Fatemeh Kouhkan
Original Article

Abstract

MicroRNA-455-5p (miR-455-5p) seems to have an anti-inflammatory role in the immune system since its expression is induced by IL-10 cytokine. Multiple sclerosis (MS) is a chronic demyelinating neurodegenerative disease of the central nervous system that is caused by an autoimmune inflammatory attack against the myelin insulation of neurons. The expression level of miR-455-5p and its role in MS pathogenesis has yet to be elucidated. We found that miR-455-5p expression was highly correlated with disease severity in MS patients. miR-455-5p expression inversely correlates with its inflammatory-predicted targets (MyD88 and REL) in relapse- and remitting-phase patients. Luciferase assays confirm that MyD88 and REL are direct targets of miR-455-5p. This study represents the first report of the miR-455-5p acts as an anti-inflammatory role in MS, at least partially through targeting MyD88 and REL. This study may provide important information for the use of miR-455-5p as a novel strategy to improve the severity of disease and control inflammation and attack in MS patients.

Keywords

Multiple sclerosis Inflammation miR-455-5p MyD88 REL 

Notes

Acknowledgements

The authors are thankful for the valuable contribution of the patients included in the study. They are grateful to Dr. Abdorreza Naser Moghadasi for his excellent assistance and scientific advice in patient sample collection and patient categorization.

Funding information

This work was supported by a research grant from the Stem cell Technology Research Center, Tehran, Iran.

References

  1. Cardwell LN, Weaver BK (2014) IL-10 inhibits LPS-induced expression of miR-147 in murine macrophages. Adv Biol Chem 4:261–273CrossRefGoogle Scholar
  2. Chitnis T, Weiner HL (2017) CNS inflammation and neurodegeneration. J Clin Investig 127:3577–3587CrossRefGoogle Scholar
  3. Cunha F, Mohcada S, Liew F (1992) Interleukin-10 (IL-10) inhibits the induction of nitric oxide synthase by interferon-γ in murine macrophages. Biochem Biophys Res Commun 182:1155–1159CrossRefGoogle Scholar
  4. Du C et al (2009) MicroRNA miR-326 regulates T H-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10:1252–1259CrossRefGoogle Scholar
  5. Ersoy E, Kuş C, Şener U, Coker I, Zorlu Y (2005) The effects of interferon-β on interleukin-10 in multiple sclerosis patients. Eur J Neurol 12:208–211CrossRefGoogle Scholar
  6. Guo B (2016) IL-10 modulates Th17 pathogenicity during autoimmune diseases Journal of clinical & cellular immunology 7Google Scholar
  7. Hilliard BA, Mason N, Xu L, Sun J, Lamhamedi-Cherradi SE, Liou HC, Hunter C, Chen YH (2002) Critical roles of c-Rel in autoimmune inflammation and helper T cell differentiation. J Clin Investig 110:843–850CrossRefGoogle Scholar
  8. Kouhkan F, Soleimani M, Daliri M, Behmanesh M, Mobarra N (2013) miR-451 up-regulation, induce erythroid differentiation of CD133+ cells independent of cytokine cocktails. Iran J Basic Med Sci 16:756PubMedPubMedCentralGoogle Scholar
  9. Kouhkan F, Mobarra N, Soufi-Zomorrod M, Keramati F, Hosseini Rad SMA, Fathi-Roudsari M, Tavakoli R, Hajarizadeh A, Ziaei S, Lahmi R, Hanif H, Soleimani M (2016) MicroRNA-129-1 acts as tumour suppressor and induces cell cycle arrest of GBM cancer cells through targeting IGF2BP3 and MAPK1. J Med Genet 53:24–33CrossRefGoogle Scholar
  10. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1444CrossRefGoogle Scholar
  11. Lassmann H (2018) Multiple sclerosis pathology. Cold Spring Harbor Perspect Med 8:a028936CrossRefGoogle Scholar
  12. Leibowitz SM, Yan J (2016) NF-κB pathways in the pathogenesis of multiple sclerosis and the therapeutic implications. Front Mol Neurosci 9:84CrossRefGoogle Scholar
  13. Li Q-J, Chau J, Ebert PJR, Sylvester G, Min H, Liu G, Braich R, Manoharan M, Soutschek J, Skare P, Klein LO, Davis MM, Chen CZ (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129:147–161CrossRefGoogle Scholar
  14. Liu T, Zhang L, Joo D, Sun S-C (2017) NF-κB signaling in inflammation. Signal Transduction Targeted Ther 2:17023CrossRefGoogle Scholar
  15. Marziniak M, Meuth S (2014) Current perspectives on interferon Beta-1b for the treatment of multiple sclerosis. Adv Ther 31:915–931CrossRefGoogle Scholar
  16. Matute C, Alberdi E, Domercq MA, Pérez-Cerdá F, Pérez-Samartin A, Sánchez-Gómez MAV (2001) The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci 24:224–230CrossRefGoogle Scholar
  17. Mc Guire C, Prinz M, Beyaert R, van Loo G (2013) Nuclear factor kappa B (NF-κB) in multiple sclerosis pathology. Trends Mol Med 19:604–613CrossRefGoogle Scholar
  18. Miranda-Hernandez S, Gerlach N, Fletcher JM, Biros E, Mack M, Körner H, Baxter AG (2011) Role for MyD88, TLR2 and TLR9 but not TLR1, TLR4 or TLR6 in experimental autoimmune encephalomyelitis. J Immunol 187:791–804CrossRefGoogle Scholar
  19. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10:111–122.  https://doi.org/10.1038/nri2708 CrossRefPubMedGoogle Scholar
  20. Obeidi N, Pourfathollah AA, Soleimani M, Zarif MN, Kouhkan F (2016) The Effect of mir-451 upregulation on erythroid lineage differentiation of murine embryonic stem cells. Cell J (Yakhteh) 18:165Google Scholar
  21. Park S-H, Cho G, Park S-G (2014) NF-κB activation in T helper 17 cell differentiation. Immun Netw 14:14–20CrossRefGoogle Scholar
  22. Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, Volinia S, Alder H, Liu CG, Rassenti L, Calin GA, Hagan JP, Kipps T, Croce CM (2006) Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 66:11590–11593CrossRefGoogle Scholar
  23. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302CrossRefGoogle Scholar
  24. Ruan Q, Chen YH (2012) Nuclear factor-κB in immunity and inflammation: the Treg and Th17 connection. In: Current Topics in Innate Immunity II Springer, pp 207–221Google Scholar
  25. Tak PP, Firestein GS (2001) NF-κB: a key role in inflammatory diseases. J Clin Investig 107:7–11CrossRefGoogle Scholar
  26. Tasharrofi N, Kouhkan F, Soleimani M, Soheili ZS, Saber MM, Dorkoosh FA (2017) Survival improvement in human retinal pigment epithelial cells via fas receptor targeting by miR-374a Journal of cellular biochemistryGoogle Scholar
  27. de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, De Vries JE (1991) Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174:1209–1220CrossRefGoogle Scholar
  28. Wu T, Chen G (2016) miRNAs participate in MS pathological processes and its therapeutic response mediators of inflammation 2016Google Scholar
  29. Zhang J, Cheng Y, Cui W, Li M, Li B, Guo L (2014) MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 266:56–63CrossRefGoogle Scholar
  30. Zhang H, Bi J, Yi H, Fan T, Ruan Q, Cai L, Chen YH, Wan X (2017) Silencing c-Rel in macrophages dampens Th1 and Th17 immune responses and alleviates experimental autoimmune encephalomyelitis in mice. Immunol Cell Biol 95:593–600CrossRefGoogle Scholar
  31. Zomorrod MS, Kouhkan F, Soleimani M, Aliyan A, Tasharrofi N (2018) Overexpression of miR-133 decrease primary endothelial cells proliferation and migration via FGFR1 targeting Experimental cell researchGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shukoofeh Torabi
    • 1
  • Mona Tamaddon
    • 1
  • Mojtaba Asadolahi
    • 1
  • Gelareh Shokri
    • 1
  • Rezvan Tavakoli
    • 1
  • Nooshin Tasharrofi
    • 1
    • 2
    • 3
  • Reza Rezaei
    • 1
    • 4
  • Vahid Tavakolpour
    • 1
  • Hossein Sazegar
    • 5
  • Fatemeh Kouhkan
    • 1
    • 6
  1. 1.Stem Cell Technology Research CenterTehranIran
  2. 2.Faculty of PharmacyLorestan University of Medical SciencesKhorramabadIran
  3. 3.Student Research CommitteeLorestan University of Medical SciencesKhorramabadIran
  4. 4.School of Biology, College of ScienceUniversity of TehranTehranIran
  5. 5.Department of Biology, Basic Sciences Faculty, Shahrekord BranchIslamic Azad UniversityShahrekordIran
  6. 6.Department of Molecular Biology and Genetic EngineeringStem Cell Technology Research CenterTehranIran

Personalised recommendations