Advertisement

Immunogenetics

, Volume 70, Issue 8, pp 523–532 | Cite as

Cdx-2 polymorphism in the vitamin D receptor gene (VDR) marks VDR expression in monocyte/macrophages through VDR promoter methylation

Original Article

Abstract

Caudal-type homeobox protein 2 (CDX-2) is an intestine-specific transcription factor (TF), with a polymorphic binding site (Cdx-2, rs11568820, A/G) in the vitamin D receptor gene (VDR). The molecular mechanism underlying Cdx-2 association with conditions like osteoporosis, which depends on intestinal VDR expression and calcium absorption, is believed to be due to higher affinity of CDX-2 for the ancestral A allele compared to the G allele. However, it is unclear why the polymorphism is associated with diseases like tuberculosis, which is dependent on VDR expression in immune cells that do not express CDX-2. This study aimed to explain Cdx-2 variant association with immune-related conditions. We hypothesised that the effect of Cdx-2 polymorphism on VDR expression in monocytes/macrophages, devoid of the CDX-2 TF, is indirect and dependent on circulating 25(OH)D3 and VDR methylation. Primary monocyte/macrophages from healthy donors (n = 100) were activated though TLR2/1 elicitation. VDR mRNA and 25(OH)D3 were quantified by RT-qPCR and LC-MS/MS, respectively. Genotyping and methylation analysis were done by pyrosequencing. AA vs. AG/GG showed reduced levels of 25(OH)D3 (P < 0.010), higher VDR promoter methylation (P < 0.050) and lower VDR mRNA induction (P < 0.050). Analysis of covariance confirmed that the effect of Cdx-2 variants depends primarily on VDR methylation. Thus, VDR methylation may confound association studies linking VDR polymorphisms to disease.

Keywords

VDR Cdx-2 Vitamin D 25-Hydroxyvitamin D3 DNA methylation 

Abbreviations

25(OH)D3

25-hydroxyvitamin D3

CGI

CpG island

CDX-2

caudal-type homeobox protein 2

Cdx-2

polymorphism in VDR

GATA

transcription factor binding to “GATA” motif

Pam3CSK4 N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-[R]-cysteinyl-[S]-seryl-[S]-lysyl-[S]-lysyl-[S]-lysyl-[S]-lysyl x 3HCL

a synthetic triacylated lipopeptide that mimics the acylated amino terminus of bacterial lipopolysaccharide

SNP

single-nucleotide polymorphism

TLR2/1

Toll-like receptor 2/1 heterodimer

VDR

vitamin D receptor

Notes

Acknowledgements

We thank Miss TJ Jeffery, Dr. FF Asani and Mr. DS Saccone for their contribution to sample collection and data processing.

Author contributions

LB was the principal investigator, project leader and budget owner. VM acquired and analysed the data under the guidance of LB. Both LB and VM wrote the article. Both authors approved the final version of the manuscript.

Funding

This work was supported by grants to LB; the National Research foundation of South Africa (NRF, Grant No. 81774) and the Cancer Association of South Africa (CANSA). The funders played no role in the study design or in the collection and analysis of data.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

251_2018_1063_MOESM1_ESM.docx (509 kb)
ESM 1 (DOCX 508 kb)

References

  1. Andraos C, Koorsen G, Knight JC, Bornman L (2011) Vitamin D receptor gene methylation is associated with ethnicity, tuberculosis, and TaqI polymorphism. Hum Immunol 72:262–268.  https://doi.org/10.1016/j.humimm.2010.12.010 CrossRefPubMedGoogle Scholar
  2. Arai H, Miyamoto KI, Yoshida M, Yamamoto H, Taketani Y, Morita K, Kubota M, Yoshida S, Ikeda M, Watabe F, Kanemasa Y, Takeda E (2001) The polymorphism in the caudal-related homeodomain protein Cdx-2 binding element in the human vitamin D receptor gene. J Bone Miner Res Off J Am Soc Bone Miner Res 16:1256–1264.  https://doi.org/10.1359/jbmr.2001.16.7.1256 CrossRefGoogle Scholar
  3. Barbareschi M, Murer B, Colby TV, Chilosi M, Macri E, Loda M, Doglioni C (2003) CDX-2 homeobox gene expression is a reliable marker of colorectal adenocarcinoma metastases to the lungs. Am J Surg Pathol 27:141–149CrossRefPubMedGoogle Scholar
  4. Casado-Díaz A, Cuenca-Acevedo R, Navarro-Valverde C, Díaz-Molina C, Caballero-Villarraso J, Santiago-Mora R, Dorado G, Quesada-Gómez JM (2013) Vitamin D status and the Cdx-2 polymorphism of the vitamin D receptor gene are determining factors of bone mineral density in young healthy postmenopausal women. J Steroid Biochem Mol Biol 136:187–189.  https://doi.org/10.1016/j.jsbmb.2012.09.026 CrossRefPubMedGoogle Scholar
  5. Dai Z-M, Fei Y-L, Zhang W-G, Liu J, Cao X-M, Qu Q-M, Li Y-C, Lin S, Wang M, Dai Z-J (2015) Association of vitamin D receptor Cdx-2 polymorphism with cancer risk: a meta-analysis. Medicine (Baltimore) 94:e1370.  https://doi.org/10.1097/MD.0000000000001370 CrossRefGoogle Scholar
  6. Dickinson JL, Perera DI, van der Mei AF, Ponsonby A-L, Polanowski AM, Thomson RJ, Taylor BV, McKay JD, Stankovich J, Dwyer T (2009) Past environmental sun exposure and risk of multiple sclerosis: a role for the Cdx-2 vitamin D receptor variant in this interaction. Mult Scler 15:563–570.  https://doi.org/10.1177/1352458509102459 CrossRefPubMedGoogle Scholar
  7. Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, Asplund A, Sjöstedt E, Lundberg E, Szigyarto CA-K, Skogs M, Takanen JO, Berling H, Tegel H, Mulder J, Nilsson P, Schwenk JM, Lindskog C, Danielsson F, Mardinoglu A, Sivertsson A, von Feilitzen K, Forsberg M, Zwahlen M, Olsson I, Navani S, Huss M, Nielsen J, Ponten F, Uhlén M (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 13:397–406.  https://doi.org/10.1074/mcp.M113.035600 CrossRefPubMedGoogle Scholar
  8. Fang Y, van Meurs JBJ, Bergink AP, Hofman A, van Duijn CM, van Leeuwen JPTM, Pols HAP, Uitterlinden AG (2003) Cdx-2 polymorphism in the promoter region of the human vitamin D receptor gene determines susceptibility to fracture in the elderly. J Bone Miner Res Off J Am Soc Bone Miner Res 18:1632–1641.  https://doi.org/10.1359/jbmr.2003.18.9.1632 CrossRefGoogle Scholar
  9. Fang Y, van Meurs JBJ, d’Alesio A, Jhamai M, Zhao H, Rivadeneira F, Hofman A, van Leeuwen JPT, Jehan F, Pols HAP, Uitterlinden AG (2005) Promoter and 3′-untranslated-region haplotypes in the vitamin D receptor gene predispose to osteoporotic fracture: the Rotterdam study. Am J Hum Genet 77:807–823CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gentil P, Lima RM, Lins TCL, Abreu BS, Pereira RW, Oliveira RJ (2007) Physical activity, Cdx-2 genotype, and BMD. Int J Sports Med 28:1065–1069.  https://doi.org/10.1055/s-2007-965130 CrossRefPubMedGoogle Scholar
  11. Harishankar M, Selvaraj P (2016) Regulatory role of Cdx-2 and Taq I polymorphism of vitamin D receptor gene on chemokine expression in pulmonary tuberculosis. Hum Immunol 77:498–505.  https://doi.org/10.1016/j.humimm.2016.04.008 CrossRefPubMedGoogle Scholar
  12. Hendrickson WK, Flavin R, Kasperzyk JL, Fiorentino M, Fang F, Lis R, Fiore C, Penney KL, Ma J, Kantoff PW, Stampfer MJ, Loda M, Mucci LA, Giovannucci E (2011) Vitamin D receptor protein expression in tumor tissue and prostate cancer progression. J Clin Oncol Off J Am Soc Clin Oncol 29:2378–2385.  https://doi.org/10.1200/JCO.2010.30.9880 CrossRefGoogle Scholar
  13. Hochberg MC (2007) Racial differences in bone strength. Trans Am Clin Climatol Assoc 118:305–315PubMedPubMedCentralGoogle Scholar
  14. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96:1911–1930.  https://doi.org/10.1210/jc.2011-0385 CrossRefPubMedGoogle Scholar
  15. Huang J, Huang J, Ma Y, Wang H, Yang J, Xiong T, Du L (2013) The Cdx-2 polymorphism in the VDR gene is associated with increased risk of cancer: a meta-analysis. Mol Biol Rep 40:4219–4225.  https://doi.org/10.1007/s11033-013-2503-9 CrossRefPubMedGoogle Scholar
  16. Jablonski NG, Chaplin G (2017) The colours of humanity: the evolution of pigmentation in the human lineage. Philos Trans R Soc Lond Ser B Biol Sci 372:20160349.  https://doi.org/10.1098/rstb.2016.0349 CrossRefGoogle Scholar
  17. Javorski N, Lima CAD, Silva LVC, Crovella S, de Azêvedo Silva J (2018) Vitamin D receptor (VDR) polymorphisms are associated to spontaneous preterm birth and maternal aspects. Gene 642:58–63.  https://doi.org/10.1016/j.gene.2017.10.087 CrossRefPubMedGoogle Scholar
  18. John EM, Schwartz GG, Koo J, Van Den Berg D, Ingles SA (2005) Sun exposure, vitamin D receptor gene polymorphisms, and risk of advanced prostate cancer. Cancer Res 65:5470–5479.  https://doi.org/10.1158/0008-5472.CAN-04-3134 CrossRefPubMedGoogle Scholar
  19. Kocabaş A, Karagüzel G, Imir N, Yavuzer U, Akçurin S (2010) Effects of vitamin D receptor gene polymorphisms on susceptibility to disease and bone mineral density in Turkish patients with type 1 diabetes mellitus. J Pediatr Endocrinol Metab 23:1289–1297PubMedGoogle Scholar
  20. Ling Y, Lin H, Aleteng Q, Ma H, Pan B, Gao J, Gao X (2016) Cdx-2 polymorphism in vitamin D receptor gene was associated with serum 25-hydroxyvitamin D levels, bone mineral density and fracture in middle-aged and elderly Chinese women. Mol Cell Endocrinol 427:155–161.  https://doi.org/10.1016/j.mce.2016.03.014 CrossRefPubMedGoogle Scholar
  21. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, Kamen DL, Wagner M, Bals R, Steinmeyer A, Zügel U, Gallo RL, Eisenberg D, Hewison M, Hollis BW, Adams JS, Bloom BR, Modlin RL (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311:1770–1773.  https://doi.org/10.1126/science.1123933 CrossRefPubMedGoogle Scholar
  22. Macdonald HM, McGuigan FE, Stewart A, Black AJ, Fraser WD, Ralston S, Reid DM (2006) Large-scale population-based study shows no evidence of association between common polymorphism of the VDR gene and BMD in British women. J Bone Miner Res Off J Am Soc Bone Miner Res 21:151–162.  https://doi.org/10.1359/JBMR.050906 CrossRefGoogle Scholar
  23. Meyer V, Saccone DS, Tugizimana F, Asani FF, Jeffery TJ, Bornman L (2017) Methylation of the vitamin D receptor (VDR) gene, together with genetic variation, race, and environment influence the signaling efficacy of the toll-like receptor 2/1-VDR pathway. Front Immunol 8:1048.  https://doi.org/10.3389/fimmu.2017.01048 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Morita A, Iki M, Dohi Y, Ikeda Y, Kagamimori S, Kagawa Y, Yoneshima H (2005) Effects of the Cdx-2 polymorphism of the vitamin D receptor gene and lifestyle factors on bone mineral density in a representative sample of Japanese women: the Japanese Population-based Osteoporosis (JPOS) study. Calcif Tissue Int 77:339–347.  https://doi.org/10.1007/s00223-005-0047-2 CrossRefPubMedGoogle Scholar
  25. O’Neill V, Asani FF, Jeffery TJ, Saccone DS, Bornman L (2013) Vitamin D receptor gene expression and function in a South African population: ethnicity, vitamin D and FokI. PloS One 8:e67663.  https://doi.org/10.1371/journal.pone.0067663 CrossRefPubMedCentralGoogle Scholar
  26. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G, Kovacs CS, Mayne ST, Rosen CJ, Shapses SA (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96:53–58.  https://doi.org/10.1210/jc.2010-2704 CrossRefPubMedGoogle Scholar
  27. Rowland GW, Schwartz GG, John EM, Ingles SA (2013) Protective effects of low calcium intake and low calcium absorption vitamin D receptor genotype in the California Collaborative Prostate Cancer study. Cancer Epidemiol Biomarkers 22:16–24.  https://doi.org/10.1158/1055-9965.EPI-12-0922-T CrossRefGoogle Scholar
  28. Saccone D, Asani F, Bornman L (2015) Regulation of the vitamin D receptor gene by environment, genetics and epigenetics. Gene 561:171–180.  https://doi.org/10.1016/j.gene.2015.02.024 CrossRefPubMedGoogle Scholar
  29. Selvaraj P, Alagarasu K, Harishankar M, Vidyarani M, Narayanan PR (2008) Regulatory region polymorphisms of vitamin D receptor gene in pulmonary tuberculosis patients and normal healthy subjects of south India. Int J Immunogenet 35:251–254.  https://doi.org/10.1111/j.1744-313X.2008.00764.x CrossRefPubMedGoogle Scholar
  30. Seuter S, Neme A, Carlberg C (2016) Epigenome-wide effects of vitamin D and their impact on the transcriptome of human monocytes involve CTCF. Nucleic Acids Res 44:4090–4104.  https://doi.org/10.1093/nar/gkv1519 CrossRefPubMedGoogle Scholar
  31. Shab-Bidar S, Neyestani TR, Djazayery A (2015) Vitamin D receptor Cdx-2-dependent response of central obesity to vitamin D intake in the subjects with type 2 diabetes: a randomised clinical trial. Br J Nutr 114:1375–1384.  https://doi.org/10.1017/S0007114515003049 CrossRefPubMedGoogle Scholar
  32. Singal R, Ginder GD (1999) DNA methylation. Blood 93:4059–4070PubMedGoogle Scholar
  33. Stathopoulou MG, Dedoussis GVZ, Trovas G, Theodoraki EV, Katsalira A, Dontas IA, Hammond N, Deloukas P, Lyritis GP (2011) The role of vitamin D receptor gene polymorphisms in the bone mineral density of Greek postmenopausal women with low calcium intake. J Nutr Biochem 22:752–757.  https://doi.org/10.1016/j.jnutbio.2010.06.007 CrossRefPubMedGoogle Scholar
  34. Tantawy M, Amer M, Raafat T, Hamdy N (2016) Vitamin D receptor gene polymorphism in Egyptian pediatric acute lymphoblastic leukemia correlation with BMD. Meta Gene 9:42–46.  https://doi.org/10.1016/j.mgene.2016.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Tuoresmäki P, Väisänen S, Neme A, Heikkinen S, Carlberg C (2014) Patterns of genome-wide VDR locations. PLoS One 9:e96105.  https://doi.org/10.1371/journal.pone.0096105 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Wilkinson RJ, Llewelyn M, Toossi Z, Patel P, Pasvol G, Lalvani A, Wright D, Latif M, Davidson RN (2000) Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case–control study. Lancet 355:618–621.  https://doi.org/10.1016/S0140-6736(99)02301-6 CrossRefPubMedGoogle Scholar
  37. Yesil S, Tanyildiz HG, Tekgunduz SA, Toprak S, Fettah A, Dikmen AU, Sahin G (2017) Vitamin D receptor polymorphisms in immune thrombocytopenic purpura. Pediatr Int 59:682–685.  https://doi.org/10.1111/ped.13273 CrossRefPubMedGoogle Scholar
  38. Zella LA, Meyer MB, Nerenz RD, Lee SM, Martowicz ML, Pike JW (2010) Multifunctional enhancers regulate mouse and human vitamin D receptor gene transcription. Mol Endocrinol 24:128–147CrossRefPubMedGoogle Scholar
  39. Zhu H, Wang X, Shi H, Su S, Harshfield GA, Gutin B, Snieder H, Dong Y (2013) A genome-wide methylation study of severe vitamin D deficiency in African American adolescents. J Pediatr 162:1004–1009.e1.  https://doi.org/10.1016/j.jpeds.2012.10.059 CrossRefPubMedGoogle Scholar
  40. Zhu H, Bhagatwala J, Huang Y, Pollock NK, Parikh S, Raed A, Gutin B, Harshfield GA, Dong Y (2016) Race/ethnicity-specific association of vitamin D and global DNA methylation: cross-sectional and interventional findings. PLoS One 11:e0152849.  https://doi.org/10.1371/journal.pone.0152849 CrossRefPubMedPubMedCentralGoogle Scholar

Web/data references

  1. The 1000 genomes project, accessed via http://www.internationalgenome.org/1000-genomes-browsers/ on 05/02/2018
  2. The Genotype-Tissue Expression (GTEx) project, accessed via GTExPortal https://www.gtexportal.org (dbGaP Accession phs000424.v7.p2) on 05/03/2018
  3. The expression atlas, accessed via https://www.ebi.ac.uk/gxa/home on 04/05/2018

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of JohannesburgAuckland ParkSouth Africa
  2. 2.School of Molecular and Cell BiologyUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations