Advertisement

Immunogenetics

, Volume 71, Issue 4, pp 321–333 | Cite as

Evidence of functional Cd94 polymorphism in a free-living house mouse population

  • Linn E. Knutsen
  • Erik Dissen
  • Per C. Saether
  • Elisabeth Gyllensten Bjørnsen
  • Jaroslav Piálek
  • Anne K. Storset
  • Preben BoysenEmail author
Original Article
  • 115 Downloads

Abstract

The CD94 receptor, expressed on natural killer (NK) and CD8+ T cells, is known as a relatively non-polymorphic receptor with orthologues in humans, other primates, cattle, and rodents. In the house mouse (Mus musculus), a single allele is highly conserved among laboratory strains, and reports of allelic variation in lab- or wild-living mice are lacking, except for deficiency in one lab strain (DBA/2J). The non-classical MHC-I molecule Qa-1b is the ligand for mouse CD94/NKG2A, presenting alternative non-americ fragment of leader peptides (Qa-1 determinant modifier (Qdm)) from classical MHC-I molecules. Here, we report a novel allele identified in free-living house mice captured in Norway, living among individuals carrying the canonical Cd94 allele. The novel Cd94LocA allele encodes 12 amino acid substitutions in the extracellular lectin-like domain. Flow cytometric analysis of primary NK cells and transfected cells indicates that the substitutions prevent binding of CD94 mAb and Qa-1b/Qdm tetramers. Our data further indicate correlation of Cd94 polymorphism with the two major subspecies of house mice in Europe. Together, these findings suggest that the Cd94LocA/NKG2A heterodimeric receptor is widely expressed among M. musculus subspecies musculus, with ligand-binding properties different from mice of subspecies domesticus, such as the C57BL/6 strain.

Keywords

NK cell Inhibitory/activating receptors MHC Comparative immunology/evolution Genomics 

Abbreviations

M. m.

Mus musculus

B6

C57BL/6

NKC

Natural killer gene complex

Qdm

Qa-1 determinant modifier

KIR

Killer cell immunoglobulin-like receptor

Notes

Author contributions

LEK, ED, AKS, and PB conceived the study and designed the experiments. LEK, ED, and PB wrote the manuscript, with contributions from JP and AKS. LEK, JP, and PB caught wild mice. LEK, ED, EGB, PCS, and PB performed lab experiments and analyses. The authors thank Stine Braaen, Hanne M. Haatveit, and Grethe M. Johansen at the Norwegian University of Life Sciences for technical assistance.

Funding

This work was funded internally at NMBU.

Compliance with ethical standards

Conflict of interest

The authors declare no financial or commercial conflicts of interest to the content of this article.

Supplementary material

251_2018_1100_MOESM1_ESM.pdf (70 kb)
Supplementary figure 1. 17 nucleotides are substituted in the novel Cd94 allele. Alignment of the Cd94 coding region cDNA sequence of C57BL/6 (AF030311) and the free-living Mus musculus from location A (Loc.A). Identical nucleotides are shaded black and substituted nucleotides white. Exons are indicated by black lines. (PDF 70 kb)
251_2018_1100_MOESM2_ESM.pdf (61 kb)
Supplementary figure 2. Two-color flow cytometry analysis of triple-transfected cells. 293T cells were transiently co-transfected with expression constructs encoding mouse NKG2A-HA, DAP12-FLAG and either the B6 or the LocA allellic versions of CD94 with a C-terminal c-Myc epitope tag, and were analyzed by flow cytometry using mAbs towards c-Myc (FITC) together with CD94 (eFluor 450, top row) or FLAG (AlexaFluor 450, bottom row). (PDF 60 kb)

References

  1. Adam SG, Caraux A, Fodil-Cornu N, Loredo-Osti JC, Lesjean-Pottier S, Jaubert J, Bubic I, Jonjic S, Guenet JL, Vidal SM, Colucci F (2006) Cmv4, a new locus linked to the NK cell gene complex, controls innate resistance to cytomegalovirus in wild-derived mice. J Immunol 176:5478–5485CrossRefGoogle Scholar
  2. Aldrich CJ, DeCloux A, Woods AS, Cotter RJ, Soloski MJ, Forman J (1994) Identification of a tap-dependent leader peptide recognized by alloreactive T cells specific for a class Ib antigen. Cell 79:649–658CrossRefGoogle Scholar
  3. Averdam A, Petersen B, Rosner C, Neff J, Roos C, Eberle M, Aujard F, Münch C, Schempp W, Carrington M, Shiina T, Inoko H, Knaust F, Coggill P, Sehra H, Beck S, Abi-Rached L, Reinhardt R, Walter L (2009) A novel system of polymorphic and diverse NK cell receptors in primates. PLoS Genet 5:e1000688CrossRefGoogle Scholar
  4. Beck JA, Lloyd S, Hafezparast M, Lennon-Pierce M, Eppig JT, Festing MF, Fisher EM (2000) Genealogies of mouse inbred strains. Nat Genet 24:23–25CrossRefGoogle Scholar
  5. Birch J, Ellis SA (2007) Complexity in the cattle CD94/NKG2 gene families. Immunogenetics 59:273–280CrossRefGoogle Scholar
  6. Borrego F, Masilamani M, Marusina A, Tang X, Coligan J (2006) The CD94/NKG2 family of receptors. Immunol Res 35:263–277CrossRefGoogle Scholar
  7. Boysen P, Eide DM, Storset AK (2011) Natural killer cells in free-living Mus musculus have a primed phenotype. Mol Ecol 20:5103–5110CrossRefGoogle Scholar
  8. Braud VM, Allan DS, O'Callaghan CA, Soderstrom K, D'Andrea A, Ogg GS, Lazetic S, Young NT, Bell JI, Phillips JH, Lanier LL, McMichael AJ (1998a) HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391:795–799CrossRefGoogle Scholar
  9. Braud VM, Allan DS, Wilson D, McMichael AJ (1998b) TAP- and tapasin-dependent HLA-E surface expression correlates with the binding of an MHC class I leader peptide. Curr Biol 8:1–10CrossRefGoogle Scholar
  10. Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM, Taly JF, Notredame C (2011) T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39:W13–W17CrossRefGoogle Scholar
  11. Dissen E, Berg SF, Westgaard IH, Fossum S (1997) Molecular characterization of a gene in the rat homologous to human CD94. Eur J Immunol 27:2080–2086CrossRefGoogle Scholar
  12. Dod B, Smadja C, Karn RC, Boursot P (2005) Testing for selection on the androgen-binding protein in the Danish mouse hybrid zone. Biol J Linn Soc 84:447–459CrossRefGoogle Scholar
  13. Ďureje Ľ, Macholán M, Baird SJE, Piálek J (2012) The mouse hybrid zone in Central Europe: from morphology to molecules. Folia Zool 61:308–318CrossRefGoogle Scholar
  14. Duvaux L, Belkhir K, Boulesteix M, Boursot P (2011) Isolation and gene flow: inferring the speciation history of European house mice. Mol Ecol 20:5248–5264CrossRefGoogle Scholar
  15. Fang M, Orr MT, Spee P, Egebjerg T, Lanier LL, Sigal LJ (2011) CD94 is essential for NK cell-mediated resistance to a lethal viral disease. Immunity 34:579–589CrossRefGoogle Scholar
  16. Gouy de Bellocq J, Baird SJ, Albrechtova J, Sobekova K, Pialek J (2015) Murine cytomegalovirus is not restricted to the house mouse Mus musculus domesticus: prevalence and genetic diversity in the European house mouse hybrid zone. J Virol 89:406–414CrossRefGoogle Scholar
  17. Goüy de Bellocq J, Uddin W, Ribas A, Bryja J, Piálek J, Baird SJE (2018) Holobiont suture zones: Parasite evidence across the European house mouse hybrid zone. Mol Ecol. Nov 14.  https://doi.org/10.1111/mec.14938
  18. Gregorova S, Forejt J (2000) PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies—a valuable resource of phenotypic variations and genomic polymorphisms. Folia Biol (Praha) 46:31–41Google Scholar
  19. Guenet JL, Bonhomme F (2003) Wild mice: an ever-increasing contribution to a popular mammalian model. Trends Genet 19:24–31CrossRefGoogle Scholar
  20. Gunturi A, Berg RE, Forman J (2004) The role of CD94/NKG2 in innate and adaptive immunity. Immunol Res 30:29–34CrossRefGoogle Scholar
  21. Hermel E, Hart AJ, Miller R, Aldrich CJ (1999) CTL and sequence analyses of MHC class IB antigens Qa1(c) (H2-T23(r)) and Qa1(d) (H2-T23(f)). Immunogenetics 49:712–717CrossRefGoogle Scholar
  22. Hermel E, Hart AJ, Gunduz I, Acton H, Kim C, Wurth M, Uddin S, Smith C, Fischer Lindahl K, Aldrich CJ (2004) Polymorphism and conservation of the genes encoding Qa1 molecules. Immunogenetics 56:639–649CrossRefGoogle Scholar
  23. Ho EL, Heusel JW, Brown MG, Matsumoto K, Scalzo AA, Yokoyama WM (1998) Murine Nkg2d and Cd94 are clustered within the natural killer complex and are expressed independently in natural killer cells. Proc Natl Acad Sci U S A 95:6320–6325CrossRefGoogle Scholar
  24. Jones EP, Van Der Kooij J, Solheim R, Searle JB (2010) Norwegian house mice (Mus musculus musculus/domesticus): distributions, routes of colonization and patterns of hybridization. Mol Ecol 19:5252–5264CrossRefGoogle Scholar
  25. Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A, Agam A, Slater G, Goodson M, Furlotte NA, Eskin E, Nellaker C, Whitley H, Cleak J, Janowitz D, Hernandez-Pliego P, Edwards A, Belgard TG, Oliver PL, McIntyre RE, Bhomra A, Nicod J, Gan X, Yuan W, van der Weyden L, Steward CA, Bala S, Stalker J, Mott R, Durbin R, Jackson IJ, Czechanski A, Guerra-Assuncao JA, Donahue LR, Reinholdt LG, Payseur BA, Ponting CP, Birney E, Flint J, Adams DJ (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477:289–294CrossRefGoogle Scholar
  26. Kraft JR, Vance RE, Pohl J, Martin AM, Raulet DH, Jensen PE (2000) Analysis of Qa-1(b)peptide binding specificity and the capacity of Cd94/Nkg2a to discriminate between Qa-1–peptide complexes. J Exp Med 192:613–624CrossRefGoogle Scholar
  27. Kvac M, McEvoy J, Loudova M, Stenger B, Sak B, Kvetonova D, Ditrich O, Raskova V, Moriarty E, Rost M, Macholan M, Pialek J (2013) Coevolution of Cryptosporidium tyzzeri and the house mouse (Mus musculus). Int J Parasitol 43:805–817CrossRefGoogle Scholar
  28. Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9:495–502CrossRefGoogle Scholar
  29. Lanneluc I, Desmarais E, Boursot P, Dod B, Bonhomme F (2004) Characterization of a centromeric marker on mouse chromosome 11 and its introgression in a domesticus/musculus hybrid zone. Mamm Genome 15:924–934CrossRefGoogle Scholar
  30. Lee N, Llano M, Carretero M, Ishitani A, Navarro F, Lopez-Botet M, Geraghty DE (1998) HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc Natl Acad Sci U S A 95:5199–5204CrossRefGoogle Scholar
  31. Lindahl KF (1986) Genetic variants of histocompatibility antigens from wild mice. Curr Top Microbiol Immunol 127:272–278Google Scholar
  32. Ljunggren HG, Karre K (1990) In search of the 'missing self': MHC molecules and NK cell recognition. Immunol Today 11:237–244CrossRefGoogle Scholar
  33. Lopez-Botet M, Muntasell A, Vilches C (2014) The CD94/NKG2C+ NK-cell subset on the edge of innate and adaptive immunity to human cytomegalovirus infection. Semin Immunol 26:145–151CrossRefGoogle Scholar
  34. Mariuzza R, Li Y (2014) Structural basis for recognition of cellular and viral ligands by NK cell receptors. Front Immunol 5Google Scholar
  35. Moser JM, Gibbs J, Jensen PE, Lukacher AE (2002) CD94-NKG2A receptors regulate antiviral CD8(+) T cell responses. Nat Immunol 3:189–195CrossRefGoogle Scholar
  36. Munclinger P, Bozikova E, Sugerkova M, Pialek J, Macholan M (2002) Genetic variation in house mice (Mus, Muridae, Rodentia) from the Czech and Slovak republics. Folia Zool 51:81–92Google Scholar
  37. Nakayama K, Tokito S, Jaulin C, Delarbre C, Kourilsky P, Nakauchi H, Gachelin G (1990) Comparative structure of two duplicated T1a class I genes (T10c and 37) of the murine H-2d MHC. Implications on the evolution of the T1a region. J Immunol 144:2400–2408Google Scholar
  38. Natarajan K, Dimasi N, Wang J, Roy AMDHM (2002) Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Annual Review of Immunology 20:853–885CrossRefGoogle Scholar
  39. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217CrossRefGoogle Scholar
  40. Orr MT, Wu J, Fang M, Sigal LJ, Spee P, Egebjerg T, Dissen E, Fossum S, Phillips JH, Lanier LL (2010) Development and function of CD94-deficient natural killer cells. PLoS One 5:e15184CrossRefGoogle Scholar
  41. Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH (2011) Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol 89:216–224CrossRefGoogle Scholar
  42. Rapaport AS, Schriewer J, Gilfillan S, Hembrador E, Crump R, Plougastel BF, Wang Y, Le Friec G, Gao J, Cella M, Pircher H, Yokoyama WM, Buller R, Mark L, Colonna M (2015) The inhibitory receptor NKG2A sustains virus-specific CD8+ T cells in response to a lethal poxvirus infection. Immunity 43:1112–1124CrossRefGoogle Scholar
  43. Saether PC, Hoelsbrekken SE, Fossum S, Dissen E (2011) Rat and mouse CD94 associate directly with the activating transmembrane adaptor proteins DAP12 and DAP10 and activate NK cell cytotoxicity. J Immunol 187:6365–6373CrossRefGoogle Scholar
  44. Salcedo M, Bousso P, Ljunggren HG, Kourilsky P, Abastado JP (1998) The Qa-1b molecule binds to a large subpopulation of murine NK cells. Eur J Immunol 28:4356–4361CrossRefGoogle Scholar
  45. Schwartz JC, Gibson MS, Heimeier D, Koren S, Phillippy AM, Bickhart DM, Smith TPL, Medrano JF, Hammond JA (2017) The evolution of the natural killer complex; a comparison between mammals using new high-quality genome assemblies and targeted annotation. Immunogenetics 69:255–269CrossRefGoogle Scholar
  46. Searle JB, Jamieson PM, Gunduz I, Stevens MI, Jones EP, Gemmill CE, King CM (2009) The diverse origins of New Zealand house mice. Proc Biol Sci 276:209–217CrossRefGoogle Scholar
  47. Shum BP, Flodin LR, Muir DG, Rajalingam R, Khakoo SI, Cleland S, Guethlein LA, Uhrberg M, Parham P (2002) Conservation and variation in human and common chimpanzee CD94 and NKG2 genes. J Immunol 168:240–252CrossRefGoogle Scholar
  48. Stevens C, Flaherty L (1996) Evidence foe antigen presentation by the class Ib molecule, Qa-1. Res Immunol 147:286–290CrossRefGoogle Scholar
  49. Vance RE, Tanamachi DM, Hanke T, Raulet DH (1997) Cloning of a mouse homolog of CD94 extends the family of C-type lectins on murine natural killer cells. Eur J Immunol 27:3236–3241CrossRefGoogle Scholar
  50. Vance RE, Kraft JR, Altman JD, Jensen PE, Raulet DH (1998) Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b). J Exp Med 188:1841–1848CrossRefGoogle Scholar
  51. Vance RE, Jamieson AM, Raulet DH (1999) Recognition of the class Ib molecule Qa-1(b) by putative activating receptors Cd94/Nkg2c and Cd94/Nkg2e on mouse natural killer cells. J Exp Med 190:1801–1812CrossRefGoogle Scholar
  52. Vance RE, Jamieson AM, Cado D, Raulet DH (2002) Implications of CD94 deficiency and monoallelic NKG2A expression for natural killer cell development and repertoire formation. Proc Natl Acad Sci 99:868–873CrossRefGoogle Scholar
  53. Wilhelm BT, Landry J-R, Takei F, Mager DL (2003) Transcriptional control of murine CD94 gene: differential usage of dual promoters by lymphoid cell types. J Immunol 171:4219–4226CrossRefGoogle Scholar
  54. Yang, H., Wang, J. R., Didion, J. P., Buus, R. J., Bell, T. A., Welsh, C. E., Bonhomme, F., Yu, A. H.-T., Nachman, M. W., Pialek, J., Tucker, P., Boursot, P., McMillan, L., Churchill, G. A. and Pardo-Manuel de Villena, F., Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet 2011. 43: 648–655Google Scholar
  55. Ying G, Wang J, Kumar V, Zajonc DM (2017) Crystal structure of Qa-1a with bound Qa-1 determinant modifier peptide. PLoS One 12:e0182296CrossRefGoogle Scholar
  56. Zeng L, Sullivan LC, Vivian JP, Walpole NG, Harpur CM, Rossjohn J, Clements CS, Brooks AG (2012) A structural basis for antigen presentation by the MHC class Ib molecule, Qa-1b. J Immunol 188:302–310CrossRefGoogle Scholar
  57. Zhou J, Matsuoka M, Cantor H, Homer R, Enelow RI (2008) Cutting edge: engagement of NKG2A on CD8+ effector T cells limits immunopathology in influenza pneumonia. J Immunol 180:25–29CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Veterinary Medicine, Department of Food Safety and Infection Biology (MatInf)Norwegian University of Life Sciences (NMBU)OsloNorway
  2. 2.Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
  3. 3.Research Facility StudenecInstitute of Vertebrate Biology of the Czech Academy of SciencesBrnoCzech Republic

Personalised recommendations