, Volume 70, Issue 4, pp 237–255 | Cite as

Identification of novel polymorphisms and two distinct haplotype structures in dog leukocyte antigen class I genes: DLA-88, DLA-12 and DLA-64

  • Jiro Miyamae
  • Shingo Suzuki
  • Fumihiko Katakura
  • Sae Uno
  • Mizuki Tanaka
  • Masaharu Okano
  • Taro Matsumoto
  • Jerzy K. Kulski
  • Tadaaki Moritomo
  • Takashi Shiina
Original Article


The current information on the polymorphism variation and haplotype structure of the domestic dog leukocyte antigen (DLA) genes is limited in comparison to other experimental animals. In this paper, to better elucidate the degree and types of polymorphisms and genetic differences for DLA-88, DLA-12 and DLA-64, we genotyped four families of 38 beagles and another 404 unrelated dogs representing 49 breeds by RT-PCR based Sanger sequencing. We also sequenced and analyzed the genomic organization of the DLA-88 and DLA-12 gene segments to better define these two-gene DLA haplotypes more precisely. We identified 45 alleles for DLA-88, 15 for DLA-12 and six for DLA-64, of which 20, 14 and six, respectively, were newly described alleles. Therefore, this study shows that the DLA-12 and DLA-64 loci are far more polymorphic than previously reported. Phylogenetic analysis strongly supported that the DLA-88, DLA-12 and DLA-64 alleles were independently generated after the original divergence of the DLA-79 alleles. Two distinct DLA-88 and DLA-12 haplotype structures, tentatively named DLA-88DLA-12 and DLA-88DLA-88L, were identified, and the novel haplotype DLA-88DLA-88L contributed to 32.7% of the unrelated dogs. Quantitative real-time PCR analysis showed that the gene expression levels of DLA-88L and DLA-88 were similar, and that the gene expression level of DLA-12 was significantly lower. In addition, haplotype frequency estimations using frequently occurring alleles revealed 45 different DLA-class I haplotypes (88-88L/12-64) overall, and 22 different DLA-class I haplotypes in homozygous dogs for 18 breeds and mongrels.


Dog Major histocompatibility complex; MHC Dog leukocyte antigen; DLA Polymorphism Haplotype structure Gene expression 



We thank Toshihiro Watari in Animal Medical Center (ANMEC) at Nihon University, Shinichi Namba in Marble Veterinary Medical center (Fujisawa, Japan) and Oriental Yeast Co. Ltd. (Tokyo, Japan) for providing the dog blood samples. We also thank Atsuko Shigenari and Sayaka Ito in Department of Molecular Life Science in Tokai University School of Medicine for technical assistance. This work was supported by Nihon University President’s Grant for Multidisciplinary Studies.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

251_2017_1031_MOESM1_ESM.docx (38 kb)
Supplementary figure 1 Nucleotide alignment for DLA-class I cDNA sequences and primer locations. The nucleotide alignment of DLA-class I genes was constructed using DLA-88 (NM_001014767.1), DLA-12 (NM_001014379.1) and DLA-64 (NM_001014378.1) cDNA and DLA-88 L (LC189199) genomic sequences. The DLA-79 cDNA sequence was not included in the alignment due to too many nucleotide differences. 5’UTR, SP, TM, CY and 3’UTR indicate 5′ untranslated region, signal peptide region, transmembrane region, cytoplasmic region and 3′ untranslated region, respectively. Hyphen indicates insertion or deletion site, and asterisk and period indicate matched and mismatched site among three sequences, respectively. Yellow background (around positions 100 bp) indicates sense primers for RT-PCR and genomic analyses, blue background (around positions 630 bp) indicates sense primers for quantitative PCR analysis, and green background (around positions 730 bp) indicates anti-sense primers for RT-PCR, genomic and quantitative PCR analyses. (DOCX 37 kb).
251_2017_1031_MOESM2_ESM.pptx (82 kb)
Supplementary figure 2 Inheritance of DLA-class I haplotypes based on DLA-class I cDNA analysis in four beagle families. A total of 38 beagles from four families were used for this study. Colored bars show the DLA haplotypes that are indicated in the table below the four pedigree charts. (PPTX 81 kb).
251_2017_1031_MOESM3_ESM.pptx (59 kb)
Supplementary figure 3 Relative gene expression levels of DLA-class I genes in each haplotype. (A) Relative gene expression levels of the DLA-88, DLA-12 and DLA-64 genes of the DLA-88-DLA-12-DLA-64 haplotypes using ten dogs. The DLA-88*501:01-DLA-12*1-DLA-64*nov2 (N = 4), DLA-88*006:01-DLA-12*1-DLA-64*nov2 (N = 3) and DLA-88*012:01-DLA-12*1-DLA-64*nov2 (N = 3) were analyzed. (B) Relative gene expression levels of the DLA-88, DLA-88 L and DLA-64 genes of DLA-88-DLA-88L-DLA-64 haplotypes using 12 dogs. The DLA-88*028:01-DLA-88*029:01-DLA-64*nov2 (N = 3), DLA-88*028:03-DLA-88*029:01-DLA-64*nov2 (N = 3), DLA-88*003:02-DLA-88*017:01-DLA-64*nov2 (N = 3) and DLA-88*nov10-DLA-88*L-DLA-64*nov2 (N = 3) were analyzed. Vertical axis shows the relative quantitative values by the real-time PCR method. Thin bars show standard errors. The vertical bars represent the mean of the relative quantitative values. (PPTX 58 kb).
251_2017_1031_MOESM4_ESM.pptx (635 kb)
Supplementary figure 4 Logos of amino acid consensus sequences of T cell recognition sites (TRSs) and peptide binding regions (PBRs) of translated DLA-class I genes. The logos plots were analyzed using 65 allele sequences (58 major and seven minor official alleles) with 45 DLA-88 (41 DLA-88 + four DLA-88*50X), seven DLA-88 L, 11 DLA-12 and two DLA-64 and six released DLA-79 sequences. (A) and (B) show logos for TRSs and PBRs, respectively. The overall height of each stack indicates the amino acid conservation at that position and the height of the letters within each stack indicated the relative frequency of the conforming amino acid at that position (Crooks et al. 2004). The overall height of DLA-64 is underestimated due to the low number of alleles. Yellow box shows an extra residue (leucine, L) in the DLA-88*50X allele group at position 155, which was attributed as part of the TRSs in a recent study (Xiao et al. 2016). Blue, black and green letters indicate hydrophilic, hydrophobic and green neutral amino acid residues, respectively. (PPTX 635 kb).
251_2017_1031_MOESM5_ESM.xlsx (17 kb)
Supplementary Table 1 (XLSX 16 kb).
251_2017_1031_MOESM6_ESM.xlsx (20 kb)
Supplementary Table 2A (XLSX 20 kb).
251_2017_1031_MOESM7_ESM.xlsx (17 kb)
Supplementary Table 2B (XLSX 16 kb).
251_2017_1031_MOESM8_ESM.xlsx (10 kb)
Supplementary Table 3 (XLSX 9 kb).
251_2017_1031_MOESM9_ESM.xlsx (22 kb)
Supplementary Table 4 (XLSX 21 kb).
251_2017_1031_MOESM10_ESM.xlsx (17 kb)
Supplementary Table 5 (XLSX 16 kb).


  1. Anfossi N, Andre P, Guia S, Falk CS, Roetynck S, Stewart CA, Breso V, Frassati C, Reviron D, Middleton D, Romagne F, Ugolini S, Vivier E (2006) Human NK cell education by inhibitory receptors for MHC class I. Immunity 25:331–342CrossRefPubMedGoogle Scholar
  2. Apps R, Qi Y, Carlson JM, Chen H, Gao X, Thomas R, Yuki Y, Del Prete GQ, Goulder P, Brumme ZL, Brumme CJ, John M, Mallal S, Nelson G, Bosch R, Heckerman D, Stein JL, Soderberg KA, Moody MA, Denny TN, Zeng X, Fang J, Moffett A, Lifson JD, Goedert JJ, Buchbinder S, Kirk GD, Fellay J, McLaren P, Deeks SG, Pereyra F, Walker B, Michael NL, Weintrob A, Wolinsky S, Liao W, Carrington M (2013) Influence of HLA-C expression level on HIV control. Science 340:87–91CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arinzeh TL, Peter SJ, Archambault MP, van den Bos C, Gordon S, Kraus K, Smith A, Kadiyala S (2003) Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am 85-A:1927–1935CrossRefPubMedGoogle Scholar
  4. Bexfield NH, Watson PJ, Aguirre-Hernandez J, Sargan DR, Tiley L, Heeney JL, Kennedy LJ (2012) DLA class II alleles and haplotypes are associated with risk for and protection from chronic hepatitis in the English Springer spaniel. PLoS One 7:e42584CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329:512–518CrossRefPubMedGoogle Scholar
  6. Braud VM, Allan DS, O'Callaghan CA, Soderstrom K, D'Andrea A, Ogg GS, Lazetic S, Young NT, Bell JI, Phillips JH, Lanier LL, McMichael AJ (1998) HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391:795–799CrossRefPubMedGoogle Scholar
  7. Burnett RC, DeRose SA, Wagner JL, Storb R (1997) Molecular analysis of six dog leukocyte antigen class I sequences including three complete genes, two truncated genes and one full-length processed gene. Tissue Antigens 49:484–495CrossRefPubMedGoogle Scholar
  8. Burnett RC, Geraghty DE (1995) Structure and expression of a divergent canine class I gene. J Immunol 155:4278–4285PubMedGoogle Scholar
  9. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190CrossRefPubMedPubMedCentralGoogle Scholar
  10. Debenham SL, Hart EA, Ashurst JL, Howe KL, Quail MA, Ollier WE, Binns MM (2005) Genomic sequence of the class II region of the canine MHC: comparison with the MHC of other mammalian species. Genomics 85:48–59CrossRefPubMedGoogle Scholar
  11. Frantz LA, Mullin VE, Pionnier-Capitan M, Lebrasseur O, Ollivier M, Perri A, Linderholm A, Mattiangeli V, Teasdale MD, Dimopoulos EA, Tresset A, Duffraisse M, McCormick F, Bartosiewicz L, Gal E, Nyerges EA, Sablin MV, Brehard S, Mashkour M, Balasescu A, Gillet B, Hughes S, Chassaing O, Hitte C, Vigne JD, Dobney K, Hanni C, Bradley DG, Larson G (2016) Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 352:1228–1231CrossRefPubMedGoogle Scholar
  12. Friedenberg SG, Buhrman G, Chdid L, Olby NJ, Olivry T, Guillaumin J, O'Toole T, Goggs R, Kennedy LJ, Rose RB, Meurs KM (2016) Evaluation of a DLA-79 allele associated with multiple immune-mediated diseases in dogs. Immunogenetics 68:205–217CrossRefPubMedGoogle Scholar
  13. Gagnier L, Wilhelm BT, Mager DL (2003) Ly49 genes in non-rodent mammals. Immunogenetics 55:109–115CrossRefPubMedGoogle Scholar
  14. Graumann MB, DeRose SA, Ostrander EA, Storb R (1998) Polymorphism analysis of four canine MHC class I genes. Tissue Antigens 51:374–381CrossRefPubMedGoogle Scholar
  15. Hammond JA, Guethlein LA, Abi-Rached L, Moesta AK, Parham P (2009) Evolution and survival of marine carnivores did not require a diversity of killer cell Ig-like receptors or Ly49 NK cell receptors. J Immunol 182:3618–3627CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hardt C, Ferencik S, Tak R, Hoogerbrugge PM, Wagner V, Grosse-Wilde H (2006) Sequence-based typing reveals a novel DLA-88 allele, DLA-88*04501, in a beagle family. Tissue Antigens 67:163–165CrossRefPubMedGoogle Scholar
  17. Hedges SB, Kumar S (2009) The timetree of life. Oxford University Press, New YorkGoogle Scholar
  18. Holmes EC, Roberts AF, Staines KA, Ellis SA (2003) Evolution of major histocompatibility complex class I genes in Cetartiodactyls. Immunogenetics 55:193–202CrossRefPubMedGoogle Scholar
  19. Hosomichi K, Miller MM, Goto RM, Wang Y, Suzuki S, Kulski JK, Nishibori M, Inoko H, Hanzawa K, Shiina T (2008) Contribution of mutation, recombination, and gene conversion to chicken MHC-B haplotype diversity. J Immunol 181:3393–3399CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jung DI, Ha J, Kang BT, Kim JW, Quan FS, Lee JH, Woo EJ, Park HM (2009) A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury. J Neurol Sci 285:67–77CrossRefPubMedGoogle Scholar
  21. Kennedy LJ, Altet L, Angles JM, Barnes A, Carter SD, Francino O, Gerlach JA, Happ GM, Ollier WE, Polvi A, Thomson W, Wagner JL (1999) Nomenclature for factors of the dog major histocompatibility system (DLA), 1998. First report of the ISAG DLA Nomenclature Committee. International Society for Animals Genetics. Tissue Antigens 54:312–321CrossRefPubMedGoogle Scholar
  22. Kennedy LJ, Barnes A, Ollier WE, Day MJ (2006) Association of a common dog leucocyte antigen class II haplotype with canine primary immune-mediated haemolytic anaemia. Tissue Antigens 68:502–508CrossRefPubMedGoogle Scholar
  23. Kennedy LJ, Barnes A, Short A, Brown JJ, Seddon J, Fleeman L, Brkljacic M, Happ GM, Catchpole B, Ollier WE (2007) Canine DLA diversity: 3. Disease studies. Tissue Antigens 69(Suppl 1):292–296CrossRefPubMedGoogle Scholar
  24. Kennedy LJ, Ollier WER, Marti R, Wagner JL, Storb R (2012) Immunogenetics. In: Ruvinsky A, Ostrander E (eds) The Genetics of the Dog, 2nd, Edition edn. CAB International, WallingfordGoogle Scholar
  25. Kim JW, Lee JH, Lyoo YS, Jung DI, Park HM (2013) The effects of topical mesenchymal stem cell transplantation in canine experimental cutaneous wounds. Vet Dermatol 24:242–e53CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, DeMars R (1990) A class I antigen, HLA-G, expressed in human trophoblasts. Science 248:220–223CrossRefPubMedGoogle Scholar
  27. Kulski JK, Shiina T, Anzai T, Kohara S, Inoko H (2002) Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev 190:95–122CrossRefPubMedGoogle Scholar
  28. Kumanovics A, Takada T, Lindahl KF (2003) Genomic organization of the mammalian MHC. Annu Rev Immunol 21:629–657CrossRefPubMedGoogle Scholar
  29. Laurenson K, Sillero-Zubiri C, Thompson H, Shiferaw F, Thirgood S, Malcolm J (1998) Disease as a threat to endangered species: Ethiopian wolves, domestic dogs and canine pathogens. Anim Conserv 1:273–280CrossRefGoogle Scholar
  30. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ 3rd, Zody MC, Mauceli E, Xie X, Breen M, Wayne RK, Ostrander EA, Ponting CP, Galibert F, Smith DR, PJ DJ, Kirkness E, Alvarez P, Biagi T, Brockman W, Butler J, Chin CW, Cook A, Cuff J, Daly MJ, DeCaprio D, Gnerre S, Grabherr M, Kellis M, Kleber M, Bardeleben C, Goodstadt L, Heger A, Hitte C, Kim L, Koepfli KP, Parker HG, Pollinger JP, Searle SM, Sutter NB, Thomas R, Webber C, Baldwin J, Abebe A, Abouelleil A, Aftuck L, Ait-Zahra M, Aldredge T, Allen N, An P, Anderson S, Antoine C, Arachchi H, Aslam A, Ayotte L, Bachantsang P, Barry A, Bayul T, Benamara M, Berlin A, Bessette D, Blitshteyn B, Bloom T, Blye J, Boguslavskiy L, Bonnet C, Boukhgalter B, Brown A, Cahill P, Calixte N, Camarata J, Cheshatsang Y, Chu J, Citroen M, Collymore A, Cooke P, Dawoe T, Daza R, Decktor K, DeGray S, Dhargay N, Dooley K, Dooley K, Dorje P, Dorjee K, Dorris L, Duffey N, Dupes A, Egbiremolen O, Elong R, Falk J, Farina A, Faro S, Ferguson D, Ferreira P, Fisher S, FitzGerald M et al (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819CrossRefPubMedGoogle Scholar
  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  32. Massey J, Boag A, Short AD, Scholey RA, Henthorn PS, Littman MP, Husebye E, Catchpole B, Pedersen N, Mellersh CS, Ollier WE, Kennedy LJ (2013a) MHC class II association study in eight breeds of dog with hypoadrenocorticism. Immunogenetics 65:291–297CrossRefPubMedGoogle Scholar
  33. Massey J, Rothwell S, Rusbridge C, Tauro A, Addicott D, Chinoy H, Cooper RG, Ollier WE, Kennedy LJ (2013b) Association of an MHC class II haplotype with increased risk of polymyositis in Hungarian Vizsla dogs. PLoS One 8:e56490CrossRefPubMedPubMedCentralGoogle Scholar
  34. Matsumoto T, Kano K, Kondo D, Fukuda N, Iribe Y, Tanaka N, Matsubara Y, Sakuma T, Satomi A, Otaki M, Ryu J, Mugishima H (2008) Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J Cell Physiol 215:210–222CrossRefPubMedGoogle Scholar
  35. Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci U S A 94:7799–7806CrossRefPubMedPubMedCentralGoogle Scholar
  36. Niskanen AK, Hagstrom E, Lohi H, Ruokonen M, Esparza-Salas R, Aspi J, Savolainen P (2013) MHC variability supports dog domestication from a large number of wolves: high diversity in Asia. Heredity (Edinb) 110:80–85CrossRefGoogle Scholar
  37. Noe L, Kucherov G (2005) YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Res 33:W540–W543CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pang JF, Kluetsch C, Zou XJ, Zhang AB, Luo LY, Angleby H, Ardalan A, Ekstrom C, Skollermo A, Lundeberg J, Matsumura S, Leitner T, Zhang YP, Savolainen P (2009) mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16,300 years ago, from numerous wolves. Mol Biol Evol 26:2849–2864CrossRefPubMedPubMedCentralGoogle Scholar
  39. Parham P, Lomen CE, Lawlor DA, Ways JP, Holmes N, Coppin HL, Salter RD, Wan AM, Ennis PD (1988) Nature of polymorphism in HLA-A, −B, and -C molecules. Proc Natl Acad Sci U S A 85:4005–4009CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pedersen NC, Pooch AS, Liu H (2016) A genetic assessment of the English bulldog. Canine Genet Epidemiol 3:6CrossRefPubMedPubMedCentralGoogle Scholar
  41. Petersdorf EW, Gooley TA, Malkki M, Bacigalupo AP, Cesbron A, Du Toit E, Ehninger G, Egeland T, Fischer GF, Gervais T, Haagenson MD, Horowitz MM, Hsu K, Jindra P, Madrigal A, Oudshoorn M, Ringden O, Schroeder ML, Spellman SR, Tiercy JM, Velardi A, Witt CS, O'Huigin C, Apps R, Carrington M, International Histocompatibility Working Group in Hematopoietic Cell T (2014) HLA-C expression levels define permissible mismatches in hematopoietic cell transplantation. Blood 124:3996–4003CrossRefPubMedPubMedCentralGoogle Scholar
  42. Petersdorf EW, Malkki M, O'HUigin C, Carrington M, Gooley T, Haagenson MD, Horowitz MM, Spellman SR, Wang T, Stevenson P (2015) High HLA-DP expression and graft-versus-host disease. N Engl J Med 373:599–609CrossRefPubMedPubMedCentralGoogle Scholar
  43. Rahim MM, Makrigiannis AP (2015) Ly49 receptors: evolution, genetic diversity, and impact on immunity. Immunol Rev 267:137–147CrossRefPubMedGoogle Scholar
  44. Ross P, Buntzman AS, Vincent BG, Grover EN, Gojanovich GS, Collins EJ, Frelinger JA, Hess PR (2012) Allelic diversity at the DLA-88 locus in Golden Retriever and Boxer breeds is limited. Tissue Antigens 80:175–183CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rouas-Freiss N, Goncalves RM, Menier C, Dausset J, Carosella ED (1997) Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. Proc Natl Acad Sci U S A 94:11520–11525CrossRefPubMedPubMedCentralGoogle Scholar
  46. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  47. Sandmaier BM, Storb R, Santos EB, Krizanac-Bengez L, Lian T, McSweeney PA, Yu C, Schuening FG, Deeg HJ, Graham T (1996) Allogeneic transplant of canine peripheral blood stem cells mobilized by recombinant canine hematopoietic growth factors. Blood 87:3508–3513PubMedGoogle Scholar
  48. Sarmiento UM, DeRose S, Sarmiento JI, Storb R (1992) Allelic variation in the DQ subregion of the canine major histocompatibility complex: I DQA. Immunogenetics 35:416–420CrossRefPubMedGoogle Scholar
  49. Sarmiento UM, DeRose S, Sarmiento JI, Storb R (1993) Allelic variation in the DQ subregion of the canine major histocompatibility complex: II DQB. Immunogenetics 37:148–152CrossRefPubMedGoogle Scholar
  50. Sarmiento UM, Storb R (1990a) Nucleotide sequence of a dog class I cDNA clone. Immunogenetics 31:400–404CrossRefPubMedGoogle Scholar
  51. Sarmiento UM, Storb R (1990b) Nucleotide sequence of a dog DRB cDNA clone. Immunogenetics 31:396–399CrossRefPubMedGoogle Scholar
  52. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108CrossRefPubMedGoogle Scholar
  53. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367PubMedGoogle Scholar
  54. Shiba Y, Gomibuchi T, Seto T, Wada Y, Ichimura H, Tanaka Y, Ogasawara T, Okada K, Shiba N, Sakamoto K, Ido D, Shiina T, Ohkura M, Nakai J, Uno N, Kazuki Y, Oshimura M, Minami I, Ikeda U (2016) Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538:388–391CrossRefPubMedGoogle Scholar
  55. Shiina T, Blancher A, Inoko H, Kulski JK (2017) Comparative genomics of the human, macaque and mouse major histocompatibility complex. Immunology 150:127–138CrossRefPubMedGoogle Scholar
  56. Shiina T, Hosomichi K, Inoko H, Kulski JK (2009) The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet 54:15–39CrossRefPubMedGoogle Scholar
  57. Shiina T, Inoko H, Kulski JK (2004) An update of the HLA genomic region, locus information and disease associations: 2004. Tissue Antigens 64:631–649CrossRefPubMedGoogle Scholar
  58. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989CrossRefPubMedPubMedCentralGoogle Scholar
  59. Storb R, Yu C, Wagner JL, Deeg HJ, Nash RA, Kiem HP, Leisenring W, Shulman H (1997) Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after marrow transplantation. Blood 89:3048–3054PubMedGoogle Scholar
  60. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  61. Tsai KL, Starr-Moss AN, Venkataraman GM, Robinson C, Kennedy LJ, Steiner JM, Clark LA (2013) Alleles of the major histocompatibility complex play a role in the pathogenesis of pancreatic acinar atrophy in dogs. Immunogenetics 65:501–509CrossRefPubMedGoogle Scholar
  62. Vance RE, Kraft JR, Altman JD, Jensen PE, Raulet DH (1998) Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b). J Exp Med 188:1841–1848CrossRefPubMedPubMedCentralGoogle Scholar
  63. Venkataraman G, Kennedy L, Little MT, Graves S, Harkey M, Torok-Storb B, Storb R (2017) Thirteen novel canine dog leukocyte antigen-88 alleles identified by sequence-based typing. HLA 90:165–170CrossRefPubMedGoogle Scholar
  64. Venkataraman GM, Geraghty D, Fox J, Graves SS, Zellmer E, Storer BE, Torok-Storb BJ, Storb R (2013) Canine DLA-79 gene: an improved typing method, identification of new alleles and its role in graft rejection and graft-versus-host disease. Tissue Antigens 81:204–211CrossRefPubMedPubMedCentralGoogle Scholar
  65. Venkataraman GM, Stroup P, Graves SS, Storb R (2007) An improved method for dog leukocyte antigen 88 typing and two new major histocompatibility complex class I alleles, DLA-88*01101 and DLA-88*01201. Tissue Antigens 70:53–57CrossRefPubMedGoogle Scholar
  66. Vonholdt BM, Pollinger JP, Lohmueller KE, Han E, Parker HG, Quignon P, Degenhardt JD, Boyko AR, Earl DA, Auton A, Reynolds A, Bryc K, Brisbin A, Knowles JC, Mosher DS, Spady TC, Elkahloun A, Geffen E, Pilot M, Jedrzejewski W, Greco C, Randi E, Bannasch D, Wilton A, Shearman J, Musiani M, Cargill M, Jones PG, Qian Z, Huang W, Ding ZL, Zhang YP, Bustamante CD, Ostrander EA, Novembre J, Wayne RK (2010) Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 464:898–902CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wagner JL, Burnett RC, DeRose SA, Francisco LV, Storb R, Ostrander EA (1996) Histocompatibility testing of dog families with highly polymorphic microsatellite markers. Transplantation 62:876–877CrossRefPubMedGoogle Scholar
  68. Wagner JL, Creer SA, Storb R (2000) Dog class I gene DLA-88 histocompatibility typing by PCR-SSCP and sequencing. Tissue Antigens 55:564–567CrossRefPubMedGoogle Scholar
  69. Wagner JL, Palti Y, DiDario D, Faraco J (2005) Sequence of the canine major histocompatibility complex region containing non-classical class I genes. Tissue Antigens 65:549–555CrossRefPubMedGoogle Scholar
  70. Wilbe M, Jokinen P, Hermanrud C, Kennedy LJ, Strandberg E, Hansson-Hamlin H, Lohi H, Andersson G (2009) MHC class II polymorphism is associated with a canine SLE-related disease complex. Immunogenetics 61:557–564CrossRefPubMedGoogle Scholar
  71. Xiao J, Xiang W, Chai Y, Haywood J, Qi J, Ba L, Qi P, Wang M, Liu J, Gao GF (2016) Diversified anchoring features the peptide presentation of DLA-88*50801: first structural insight into domestic dog MHC class I. J Immunol 197:2306–2315CrossRefPubMedGoogle Scholar
  72. Yamanaka S (2009) A fresh look at iPS cells. Cell 137:13–17CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jiro Miyamae
    • 1
    • 2
  • Shingo Suzuki
    • 2
  • Fumihiko Katakura
    • 1
  • Sae Uno
    • 1
  • Mizuki Tanaka
    • 1
  • Masaharu Okano
    • 1
  • Taro Matsumoto
    • 3
  • Jerzy K. Kulski
    • 2
    • 4
  • Tadaaki Moritomo
    • 1
  • Takashi Shiina
    • 2
  1. 1.Department of Bio Resource ScienceNihon University School of Veterinary MedicineFujisawaJapan
  2. 2.Department of Molecular Life Science, Division of Basic Medical Science and Molecular MedicineTokai University School of MedicineIseharaJapan
  3. 3.Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Advanced Medical Research CenterNihon University School of MedicineTokyoJapan
  4. 4.School of Psychiatry and Clinical NeurosciencesThe University of Western AustraliaCrawleyAustralia

Personalised recommendations