, Volume 70, Issue 1, pp 37–51 | Cite as

Variants in the non-coding region of the TLR2 gene associated with infectious subphenotypes in pediatric sickle cell anemia

  • Susana David
  • Pedro Aguiar
  • Liliana Antunes
  • Alexandra Dias
  • Anabela Morais
  • Anavaj Sakuntabhai
  • João Lavinha
Original Article


Sickle cell anemia (SCA) is characterized by chronic hemolysis, severe vasoocclusive crises (VOCs), and recurrent often severe infections. A cohort of 95 SCA pediatric patients was the background for genotype-to-phenotype association of the patient’s infectious disease phenotype and three non-coding polymorphic regions of the TLR2 gene, the −196 to −174 indel, SNP rs4696480, and a (GT)n short tandem repeat. The infectious subphenotypes included (A) recurrent respiratory infections and (B) severe bacterial infection at least once during the patient’s follow-up. The absence of the haplotype [Del]-T-[n ≥ 17] (Hap7) in homozygocity protected against subphenotype (B), in a statistically significant association, resisting correction for multiple testing. For the individual loci, the same association tendencies were observed as in the haplotype, including a deleterious association between the SNP rs4696480 T allele and subphenotype (A), whereas the A/A genotype was protective, and a deleterious effect of the A/T genotype with subphenotype (B), as well as including the protective effect of −196 to −174 insert (Ins) and deleterious effect of the deletion (Del) in homozygocity, against subphenotype (B). Moreover, a reduction in the incidence rate of severe bacterial infection was associated to a rise in the hemolytic score, fetal hemoglobin levels (prior to hydroxyurea treatment), and 3.7-kb alpha-thalassemia. Interestingly, differences between the effects of the two latter covariables favoring a reduction in the incidence rate of subphenotype (B) contrast with a resulting increase in relation to subphenotype (A). These results could have practical implications in health care strategies to lower the morbidity and mortality of SCA patients.


Sickle cell anemia TLR2 Genetic variants Viral and bacterial infection Hemolytic component Genotype-to-phenotype association 



We are grateful to the patients and their families. We also thank Dominique Labie for having suggested this topic of research. We thank INSA’s “Unidade de Tecnologia e Inovacão” as well as Andreia Coelho and Emanuel Ferreira for their technical support. We thank Eric David Bosne for the insight in PCA. We also thank Audrey V. Grant, Baltazar Nunes, Paula Faustino, and Vera C.M. David for their helpful suggestions in the elaboration of the study. This study was carried out with financial support from FCT/MEC through national funds and co-financed by FEDER, under the Partnership Agreement PT2020, in the project with reference UIDMULTI/00211/2013, and was partially funded by FCT grants PIC/IC/83084/2007 and the Centro de Investigação em Genética Molecular Humana (CIGMH).

Author contribution

Conceived and designed the experiments: S David, A Dias, A Morais, J Lavinha. Suggested methodologies: S David, A Dias, A Morais, A Sakuntabhai, J Lavinha. Genotyped: S David. Reorganized the database: S David. Analyzed the data: S David, P Aguiar. Carried out the investigation: S David. Provided the resources: A Dias, A Morais, J Lavinha. Wrote the paper: S David. Reviewed the paper: P Aguiar, J Lavinha, A Sakuntabhai. All authors approved the final version of the paper.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

251_2017_1013_MOESM1_ESM.pptx (66 kb)
Fig. S1 (PPTX 65 kb)
251_2017_1013_MOESM2_ESM.pptx (77 kb)
Fig. S2 (PPTX 77 kb)
251_2017_1013_MOESM3_ESM.docx (25 kb)
Table S1 (DOCX 25 kb)
251_2017_1013_MOESM4_ESM.docx (35 kb)
Table S2 (DOCX 35 kb)
251_2017_1013_MOESM5_ESM.docx (41 kb)
Table S3 (DOCX 40 kb)


  1. Ahmed SG (2011) The role of infection in the pathogenesis of vaso-occlusive crisis in patients with sickle cell disease. Mediterranean J Hematol Infect Dis 3(1):2011028CrossRefGoogle Scholar
  2. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801CrossRefPubMedGoogle Scholar
  3. Alter A, Grant A, Abel L, Alcaïs A, Schurr E (2011) Leprosy as a genetic disease. Mamm Genome 22(1–2):19–31CrossRefPubMedGoogle Scholar
  4. Bagheri V, Askari A, Arababadi MK, Kennedy D (2014) Can toll-like receptor (TLR) 2 be considered as a new target for immunotherapy against hepatitis B infection? Hum Immunol 75(6):549–554CrossRefPubMedGoogle Scholar
  5. Barbalat R, Lau L, Locksley RM, Barton GM (2009) Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands. Nat Immunol 10(11):1200–1207CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bland JM, Altman DG (1995) Multiple significance tests: the Bonferroni method. BMJ 310(6973):170CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bottema RW, Kerkhof M, Reijmerink NE, Thijs C, Smit HA, van Schayck CP, Brunekreef B, van Oosterhout AJ, Postma DS, Koppelman GH (2010) Gene-gene interaction in regulatory T-cell function in atopy and asthma development in childhood. J Allergy Clin Immunol 126(2):338–346CrossRefPubMedGoogle Scholar
  8. Bridges KR, Barabino GD, Brugnara C, Cho MR, Christoph GW, Dover G, Ewenstein BM, Golan DE, Guttmann CR, Hofrichter J, Mulkern RV (1996) A multiparameter analysis of sickle erythrocytes in patients undergoing hydroxyurea therapy. Blood 88(12):4701–4710PubMedGoogle Scholar
  9. Cai MS, Li ML, Zheng CF (2012) Herpesviral infection and toll-like receptor 2. Protein Cell 3(8):590–601CrossRefPubMedPubMedCentralGoogle Scholar
  10. Casanova JL, Abel L, Quintana-Murci L (2011) Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu Rev Immunol 29:447–491CrossRefPubMedGoogle Scholar
  11. Chen YC, Hsiao CC, Chen CJ, Chin CH, Liu SF, Wu CC, Eng HL, Chao TY, Tsen CC, Wang YH, Lin MC (2010) Toll-like receptor 2 gene polymorphisms, pulmonary tuberculosis, and natural killer cell counts. BMC Med Genet 11(1):17CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen J, Ng MML, Chu JJH (2015) Activation of TLR2 and TLR6 by dengue NS1 protein and its implications in the immunopathogenesis of dengue virus infection. PLoS Pathog 11(7):e1005053CrossRefPubMedPubMedCentralGoogle Scholar
  13. Coelho A, Dias A, Morais A, Nunes B, Ferreira E, Picanço I, Faustino P, Lavinha J (2014) Genetic variation in CD36, HBA, NOS3 and VCAM1 is associated with chronic haemolysis level in sickle cell anaemia: a longitudinal study. Eur J Haematol 92(3):237–243CrossRefPubMedGoogle Scholar
  14. Driss A, Asare KO, Hibbert JM, Gee BE, Adamkiewicz TV, Stiles JK (2009) Sickle cell disease in the post genomic era: a monogenic disease with a polygenic phenotype. Genomics Insights 2:23CrossRefPubMedCentralGoogle Scholar
  15. Eder W, Klimecki W, Yu L, von Mutius E, Riedler J, Braun-Fahrländer C, Nowak D, Martinez FD, ALEX Study Team (2004) Toll-like receptor 2 as a major gene for asthma in children of European farmers. J Allergy Clin Immunol 113(3):482–488CrossRefPubMedGoogle Scholar
  16. Embury SH, Clark MR, Monroy G, Mohandas N (1984) Concurrent sickle cell anemia and alpha-thalassemia. Effect on pathological properties of sickle erythrocytes. J Clin Investig 73(1):116CrossRefPubMedPubMedCentralGoogle Scholar
  17. Esposito S, Zampiero A, Pugni L, Tabano S, Pelucchi C, Ghirardi B, Terranova L, Miozzo M, Mosca F, Principi N (2014) Genetic polymorphisms and sepsis in premature neonates. PLoS One 9(7):e101248CrossRefPubMedPubMedCentralGoogle Scholar
  18. Folwaczny M, Glas J, Tonenchi L, Török HP (2011) Microsatellite GT polymorphism in intron 2 of human toll-like receptor (TLR) 2 gene and susceptibility to periodontitis. Clin Oral Investig 15(3):435–441CrossRefPubMedGoogle Scholar
  19. Greene JA, Sam-Agudu N, John CC, Opoka RO, Zimmerman PA, Kazura JW (2012) Toll-like receptor polymorphisms and cerebral malaria: TLR2 Δ22 polymorphism is associated with protection from cerebral malaria in a case control study. Malar J 11(1):47PubMedPubMedCentralGoogle Scholar
  20. Hawn TR, Scholes D, Li SS, Wang H, Yang Y, Roberts PL, Stapleton AE, Janer M, Aderem A, Stamm WE, Zhao LP (2009) Toll-like receptor polymorphisms and susceptibility to urinary tract infections in adult women. PLoS One 4(6):e5990CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hernandez JC, Giraldo DM, Paul S, Urcuqui-Inchima S (2015) Involvement of neutrophil hyporesponse and the role of toll-like receptors in human immunodeficiency virus 1 protection. PLoS One 10(3):e0119844CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hippenstiel S, Opitz B, Schmeck B, Suttorp N (2006) Lung epithelium as a sentinel and effector system in pneumonia–molecular mechanisms of pathogen recognition and signal transduction. Respir Res 7(1):97CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hishida A, Matsuo K, Goto Y, Naito M, Wakai K, Tajima K, Hamajima N (2010) No associations of toll-like receptor 2 (TLR2)-196 to-174del polymorphism with the risk of Helicobacter pylori seropositivity, gastric atrophy, and gastric cancer in Japanese. Gastric Cancer 13(4):251–257CrossRefPubMedGoogle Scholar
  24. Ioana M, Ferwerda B, Plantinga TS, Stappers M, Oosting M, McCall M, Cimpoeru A, Burada F, Panduru N, Sauerwein R, Doumbo O (2012) Different patterns of toll-like receptor 2 polymorphisms in populations of various ethnic and geographic origins. Infect Immun 80(5):1917–1922CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kaul DK, Fabry ME, Nagel RL (1996) The pathophysiology of vascular obstruction in the sickle syndromes. Blood Rev 10(1):29–44CrossRefPubMedGoogle Scholar
  26. Kawai T, Akira S (2005) Pathogen recognition with toll-like receptors. Curr Opin Immunol 17(4):338–344CrossRefPubMedGoogle Scholar
  27. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650CrossRefPubMedGoogle Scholar
  28. Kerkhof M, Postma DS, Brunekreef B, Reijmerink NE, Wijga AH, De Jongste JC, Gehring U, Koppelman GH (2010) Toll-like receptor 2 and 4 genes influence susceptibility to adverse effects of traffic-related air pollution on childhood asthma. Thorax 65(8):690–697CrossRefPubMedGoogle Scholar
  29. Klaassen EM, Thönissen BE, van Eys G, Dompeling E, Jöbsis Q (2013) A systematic review of CD14 and toll-like receptors in relation to asthma in Caucasian children. Allergy, Asthma Clin Immunol 9(1):10CrossRefGoogle Scholar
  30. Kormann MS, Depner M, Hartl D, Klopp N, Illig T, Adamski J, Vogelberg C, Weiland SK, von Mutius E, Kabesch M (2008) Toll-like receptor heterodimer variants protect from childhood asthma. J Allergy Clin Immunol 122(1):86–92CrossRefPubMedGoogle Scholar
  31. Lee EY, Yim JJ, Lee HS, Lee YJ, Lee EB, Song YW (2006) Dinucleotide repeat polymorphism in intron II of human toll-like receptor 2 gene and susceptibility to rheumatoid arthritis. Int J Immunogenet 33(3):211–215CrossRefPubMedGoogle Scholar
  32. Lin YT, Verma A, Hodgkinson CP (2012) Toll-like receptors and human disease: lessons from single nucleotide polymorphisms. Curr Genomics 13(8):633–645CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liu SY, Sanchez DJ, Cheng G (2011) New developments in the induction and antiviral effectors of type I interferon. Curr Opin Immunol 23(1):57–64CrossRefPubMedGoogle Scholar
  34. Ma Y, He B (2014) Recognition of herpes simplex viruses: toll-like receptors and beyond. J Mol Biol 426(6):1133–1147CrossRefPubMedGoogle Scholar
  35. Ma X, Liu Y, Gowen BB, Graviss EA, Clark AG, Musser JM (2007) Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS One 2(12):e1318CrossRefPubMedPubMedCentralGoogle Scholar
  36. Medvedev AE (2013) Toll-like receptor polymorphisms, inflammatory and infectious diseases, allergies, and cancer. J Interf Cytokine Res 33(9):467–484CrossRefGoogle Scholar
  37. Miedema KGE, Tissing WJE, Te Poele EM, Kamps WA, Alizadeh BZ, Kerkhof M, De Jongste JC, Smit HA, De Pagter AP, Bierings M, Boezen HM (2012) Polymorphisms in the TLR6 gene associated with the inverse association between childhood acute lymphoblastic leukemia and atopic disease. Leukemia 26(6):1203–1210CrossRefPubMedGoogle Scholar
  38. Misch EA, Hawn TR (2008) Toll-like receptor polymorphisms and susceptibility to human disease. Clin Sci 114(5):347–360CrossRefPubMedGoogle Scholar
  39. Mmbando BP, Mgaya J, Cox SE, Mtatiro SN, Soka D, Rwezaula S, Meda E, Msaki E, Snow RW, Jeffries N, Geller NL (2015) Negative epistasis between sickle and foetal haemoglobin suggests a reduction in protection against malaria. PLoS One 10(5):e0125929CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mukherjee S, Ganguli D, Majumder PP (2014) Global footprints of purifying selection on toll-like receptor genes primarily associated with response to bacterial infections in humans. Genome Biol Evol 6(3):551–558CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nischalke HD, Berger C, Aldenhoff K, Thyssen L, Gentemann M, Grünhage F, Lammert F, Nattermann J, Sauerbruch T, Spengler U, Appenrodt B (2011) Toll-like receptor (TLR) 2 promoter and intron 2 polymorphisms are associated with increased risk for spontaneous bacterial peritonitis in liver cirrhosis. J Hepatol 55(5):1010–1016CrossRefPubMedGoogle Scholar
  42. Nischalke HD, Coenen M, Berger C, Aldenhoff K, Müller T, Berg T, Krämer B, Körner C, Odenthal M, Schulze F, Grünhage F (2012) The toll-like receptor 2 (TLR2)-196 to-174 del/ins polymorphism affects viral loads and susceptibility to hepatocellular carcinoma in chronic hepatitis C. Int J Cancer 130(6):1470–1475CrossRefPubMedGoogle Scholar
  43. Noguchi E, Nishimura F, Fukai H, Kim J, Ichikawa K, Shibasaki M, Arinami T (2004) An association study of asthma and total serum immunoglobin E levels for toll-like receptor polymorphisms in a Japanese population. Clin Exp Allergy 34(2):177–183CrossRefPubMedGoogle Scholar
  44. Nouraie M, Lee JS, Zhang Y, Kanias T, Zhao X, Xiong Z, Oriss TB, Zeng Q, Kato GJ, Gibbs JSR, Hildesheim ME (2013) The relationship between the severity of hemolysis, clinical manifestations and risk of death in 415 patients with sickle cell anemia in the US and Europe. Haematologica 98(3):464–472CrossRefPubMedPubMedCentralGoogle Scholar
  45. Novis CL, Archin NM, Buzon MJ, Verdin E, Round JL, Lichterfeld M, Margolis DM, Planelles V, Bosque A (2013) Reactivation of latent HIV-1 in central memory CD4+ T cells through TLR-1/2 stimulation. Retrovirology 10(1):119CrossRefPubMedPubMedCentralGoogle Scholar
  46. de Oliviera Nascimento L, Massari P, Wetzler LM (2012) The role of TLR2 in infection and immunity. Front Immunol 3:79Google Scholar
  47. O’Neill LA, Bryant CE, Doyle SL (2009) Therapeutic targeting of toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev 61(2):177–197CrossRefPubMedPubMedCentralGoogle Scholar
  48. Orf K, Cunnington A (2015) Infection-related hemolysis and susceptibility to gram-negative bacterial co-infection. Front Microbiol 6:666CrossRefPubMedPubMedCentralGoogle Scholar
  49. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, De Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575CrossRefPubMedPubMedCentralGoogle Scholar
  50. Reuven EM, Ali M, Rotem E, Schwarzter R, Gramatica A, Futerman AH, Shai Y (2014) The HIV-1 envelope transmembrane domain binds TLR2 through a distinct dimerization motif and inhibits TLR2-mediated responses. PLoS Pathog 10(8):e1004248CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rostane H, Busson M, Diallo D (2012) Le risque d’infections bactériennes sévères au cours de la maladie drépanocytaire est influencé par un polymorphisme du promoteur du gène TLR-2. Congrès Soc Franc Hématol 2012; Globule rouge et fer# 138. Hématologie 18(suppl 1):26Google Scholar
  52. Song Z, Yin J, Yao C, Sun Z, Shao M, Zhang Y, Tao Z, Huang P, Tong C (2011) Variants in the toll-interacting protein gene are associated with susceptibility to sepsis in the Chinese Han population. Crit Care 15(1):R12CrossRefPubMedPubMedCentralGoogle Scholar
  53. Steinberg MH (2008) Sickle cell anemia, the first molecular disease: overview of molecular etiology, pathophysiology, and therapeutic approaches. Sci World J 8:1295–1324CrossRefGoogle Scholar
  54. Steinberg MH, Sebastiani P (2012) Genetic modifiers of sickle cell disease. Am J Hematol 87(8):795–803CrossRefPubMedPubMedCentralGoogle Scholar
  55. Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73(5):1162–1169CrossRefPubMedPubMedCentralGoogle Scholar
  56. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68(4):978–989CrossRefPubMedPubMedCentralGoogle Scholar
  57. Tahara T, Arisawa T, Wang F, Shibata T, Nakamura M, Sakata M, Hirata I, Nakano H (2007) Toll-like receptor 2–196 to 174del polymorphism influences the susceptibility of Japanese people to gastric cancer. Cancer Sci 98(11):1790–1794CrossRefPubMedGoogle Scholar
  58. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21(1):335–376CrossRefPubMedGoogle Scholar
  59. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820CrossRefPubMedGoogle Scholar
  60. Team, RC (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  61. Thompson JM, Iwasaki A (2008) Toll-like receptors regulation of viral infection and disease. Adv Drug Deliv Rev 60(7):786–794CrossRefPubMedGoogle Scholar
  62. Triantafilou K, Eryilmazlar D, Triantafilou M (2014) Herpes simplex virus 2-induced activation in vaginal cells involves toll-like receptors 2 and 9 and DNA sensors DAI and IFI16. Am J Obstet Gynecol 210(2):122–1e1CrossRefPubMedGoogle Scholar
  63. Trinchieri G (2010) Type I interferon: friend or foe? J Exp Med. doi: 10.1084/jem.20101664
  64. Velez DR, Wejse C, Stryjewski ME, Abbate E, Hulme WF, Myers JL, Estevan R, Patillo SG, Olesen R, Tacconelli A, Sirugo G (2010) Variants in toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans. Hum Genet 127(1):65–73CrossRefPubMedGoogle Scholar
  65. Ver Hoef JM, Boveng PL (2007) Quasi-Poisson vs. negative binomial regression: how should we model overdispersed count data? Ecology 88(11):2766–2772CrossRefGoogle Scholar
  66. Wu Q, Chu HW (2009) Role of infections in the induction and development of asthma: genetic and inflammatory drivers. Expert Rev Clin Immunol 5(1):97–109CrossRefPubMedPubMedCentralGoogle Scholar
  67. Yim JJ, Ding L, Schäffer AA, Park GY, Shim YS, Holland SM (2004) A microsatellite polymorphism in intron 2 of human toll-like receptor 2 gene: functional implications and racial differences. FEMS Immunol Med Microbiol 40(2):163–169CrossRefPubMedGoogle Scholar
  68. Yim JJ, Lee HW, Lee HS, Kim YW, Han SK, Shim YS, Holland SM (2006) The association between microsatellite polymorphisms in intron II of the human toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun 7(2):150–155CrossRefPubMedGoogle Scholar
  69. Yim JJ, Kim HJ, Kwon OJ, Koh WJ (2008) Association between microsatellite polymorphisms in intron II of the human toll-like receptor 2 gene and nontuberculous mycobacterial lung disease in a Korean population. Hum Immunol 69(9):572–576CrossRefPubMedGoogle Scholar
  70. Zeng HM, Pan KF, Zhang Y, Zhang L, Ma JL, Zhou T, Su HJ, Li WQ, Li JY, Gerhard M, Classen M (2011) Genetic variants of toll-like receptor 2 and 5, helicobacter pylori infection, and risk of gastric cancer and its precursors in a Chinese population. Cancer Epidemiol Prev Biomark 20(12):2594–2602CrossRefGoogle Scholar
  71. Zhang Y, Jiang T, Yang X, Xue Y, Wang C, Liu J, Zhang X, Chen Z, Zhao M, Li JC (2013) Toll-like receptor-1,-2, and-6 polymorphisms and pulmonary tuberculosis susceptibility: a systematic review and meta-analysis. PLoS One 8(5):e63357CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Susana David
    • 1
    • 2
  • Pedro Aguiar
    • 3
  • Liliana Antunes
    • 4
  • Alexandra Dias
    • 5
  • Anabela Morais
    • 6
  • Anavaj Sakuntabhai
    • 7
    • 8
  • João Lavinha
    • 1
    • 9
  1. 1.Departamento de Genética HumanaInstituto Nacional de Saúde Doutor Ricardo JorgeLisbonPortugal
  2. 2.Centro de Estudos de Ciência Animal, Instituto de Ciências e Tecnologias Agrárias e Agro-AlimentaresUniversidade do PortoPortoPortugal
  3. 3.Centro de Investigação em Saúde Pública, Escola Nacional de Saúde PublicaUniversidade Nova de LisboaLisbonPortugal
  4. 4.Departamento de EpidemiologiaInstituto Nacional de Saúde Doutor Ricardo JorgeLisbonPortugal
  5. 5.Departamento de PediatriaHospital Prof Doutor Fernando FonsecaAmadoraPortugal
  6. 6.Departamento de PediatriaHospital de Santa MariaLisbonPortugal
  7. 7.Unité de la Génétique Fonctionnelle des Maladies InfectieusesInstitut, PasteurParisFrance
  8. 8.Centre National de la Recherche ScientifiqueParisFrance
  9. 9.BioISI, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal

Personalised recommendations