Advertisement

Immunogenetics

, Volume 69, Issue 8–9, pp 529–536 | Cite as

Major histocompatibility complex variation and the evolution of resistance to amphibian chytridiomycosis

  • Minjie Fu
  • Bruce WaldmanEmail author
Review
Part of the following topical collections:
  1. Topical Collection on MHC/KIR in Health and Disease

Abstract

Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), has been implicated in population declines and species extinctions of amphibians around the world. Susceptibility to the disease varies both within and among species, most likely attributable to heritable immunogenetic variation. Analyses of transcriptional expression in hosts following their infection by Bd reveal complex responses. Species resistant to Bd generally show evidence of stronger innate and adaptive immune system responses. Major histocompatibility complex (MHC) class I and class II genes of some susceptible species are up-regulated following host infection by Bd, but resistant species show no comparable changes in transcriptional expression. Bd-resistant species share similar pocket conformations within the MHC-II antigen-binding groove. Among susceptible species, survivors of epizootics bear alleles encoding these conformations. Individuals with homozygous resistance alleles appear to benefit by enhanced resistance, especially in environmental conditions that promote pathogen virulence. Subjects that are repeatedly infected and subsequently cleared of Bd can develop an acquired immune response to the pathogen. Strong directional selection for MHC alleles that encode resistance to Bd may deplete genetic variation necessary to respond to other pathogens. Resistance to chytridiomycosis incurs life-history costs that require further study.

Keywords

Amphibian population declines Batrachochytrium dendrobatidis Chytridiomycosis Heterozygosity Major histocompatibility complex Life-history trade-offs 

Notes

Acknowledgements

We thank Arnaud Bataille and Ramasamy Dhamodharan for comments on the manuscript. Arnaud Bataille prepared Fig. 1. Our research is supported by grants (to B.W.) from the National Research Foundation of Korea (2015R1D1A1A01057282) funded by the government of the Republic of Korea (MOE), the National Geographic Foundation for Science and Exploration, and the Seoul National University R&D Foundation.

References

  1. Addis BR, Lowe WH, Hossack BR, Allendorf FW (2015) Population genetic structure and disease in montane boreal toads: more heterozygous individuals are more likely to be infected with amphibian chytrid. Conserv Genet 16:833–844CrossRefGoogle Scholar
  2. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511Google Scholar
  3. Alford R, Richards S (1997) Lack of evidence for epidemic disease as an agent in the catastrophic decline of Australian rain forest frogs. Conserv Biol 11:1026–1029Google Scholar
  4. An D, Waldman B (2016) Enhanced call effort in Japanese tree frogs infected by amphibian chytrid fungus. Biol Lett 12:20160018Google Scholar
  5. Barribeau SM, Villinger J, Waldman B (2008) Major histocompatibility complex based resistance to a common bacterial pathogen of amphibians. PLoS One 3:e2692CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bataille A, Fong JJ, Cha M, Wogan GOU, Baek HJ, Lee H, Min M-S, Waldman B (2013) Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus Batrachochytrium dendrobatidis in wild Asian amphibians. Mol Ecol 22:4196–4209Google Scholar
  7. Bataille A, Cashins SD, Grogan L, Skerratt LF, Hunter D, McFadden M, Scheele B, Brannelly LA, Macris A, Harlow PS, Bell S, Berger L, Waldman B (2015) Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation. Proc R Soc B 282:20143127CrossRefPubMedPubMedCentralGoogle Scholar
  8. Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R, Ragan MA, Hyatt AD, McDonald KR, Hines HB, Lips KR, Marantelli G, Parkes H (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci U S A 95:9031–9036Google Scholar
  9. Berger L, Roberts AA, Voyles J, Longcore JE, Murray KA, Skerratt LF (2016) History and recent progress on chytridiomycosis in amphibians. Fungal Ecol 19:89–99CrossRefGoogle Scholar
  10. Beutler B, Rietschel ET (2003) Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3:169–176Google Scholar
  11. Blaustein AR, Romansic JM, Scheessele EA, Han BA, Pessier AP, Longcore JE (2005) Interspecific variation in susceptibility of frog tadpoles to the pathogenic fungus Batrachochytrium dendrobatidis. Conserv Biol 19:1460–1468CrossRefGoogle Scholar
  12. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39CrossRefPubMedGoogle Scholar
  13. Carey C, Bruzgul JE, Livo LJ, Walling ML, Kuehl KA, Dixon BF, Pessier AP, Alford RA, Rogers KB (2006) Experimental exposures of boreal toads (Bufo boreas) to a pathogenic chytrid fungus (Batrachochytrium dendrobatidis). EcoHealth 3:5–21CrossRefGoogle Scholar
  14. Carvalho T, Becker CG, Toledo LF (2017) Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis. Proc R Soc B 284:20162254Google Scholar
  15. Carver S, Bell BD, Waldman B (2010) Does chytridiomycosis disrupt amphibian skin function? Copeia 2010:487–495CrossRefGoogle Scholar
  16. Cashins SD, Grogan LF, McFadden M, Hunter D, Harlow PS, Berger L, Skerratt LF (2013) Prior infection does not improve survival against the amphibian disease chytridiomycosis. PLoS One 8:e56747CrossRefPubMedPubMedCentralGoogle Scholar
  17. Collins JP (2010) Amphibian decline and extinction: what we know and what we need to learn. Dis Aquat Org 92:93–99Google Scholar
  18. Cresswell P, Ackerman AL, Giodini A, Peaper DR, Wearsch PA (2005) Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol Rev 207:145–157Google Scholar
  19. Dai S, Crawford F, Marrack P, Kappler JW (2008) The structure of HLA-DR52c: comparison to other HLA-DRB3 alleles. Proc Natl Acad Sci U S A 105:11893–11897Google Scholar
  20. Ellison AR, Savage AE, DiRenzo GV, Langhammer P, Lips KR, Zamudio KR (2014a) Fighting a losing battle: vigorous immune response countered by pathogen suppression of host defenses in the chytridiomycosis-susceptible frog Atelopus zeteki. G3 Genes Genom Genet 4:1275–1289Google Scholar
  21. Ellison AR, Tunstall T, DiRenzo GV, Hughey MC, Rebollar EA, Belden LK, Harris RN, Ibanez R, Lips KR, Zamudio KR (2014b) More than skin deep: functional genomic basis for resistance to amphibian chytridiomycosis. Genome Biol Evol 7:286–298CrossRefPubMedPubMedCentralGoogle Scholar
  22. Farrer RA, Weinert LA, Bielby J, Garner TW, Balloux F, Clare F, Bosch J, Cunningham AA, Weldon C, du Preez LH, Anderson L, Kosakovsky Pond SL, Shahar-Golan R, Henk DA, Fisher MC (2011) Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proc Natl Acad Sci U S A 108:18732–18736Google Scholar
  23. Fites JS, Ramsey JP, Holden WM, Collier SP, Sutherland DM, Reinert LK, Gayek AS, Dermody TS, Aune TM, Oswald-Richter K, Rollins-Smith LA (2013) The invasive chytrid fungus of amphibians paralyzes lymphocyte responses. Science 342:366–369CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fong JJ, Cheng TL, Bataille A, Pessier AP, Waldman B, Vredenburg VT (2015) Early 1900s detection of Batrachochytrium dendrobatidis in Korean amphibians. PLoS One 10:e0115656Google Scholar
  25. Garner TWJ, Walker S, Bosch J, Leech S, Rowcliffe JM, Cunningham AA, Fisher MC (2009) Life history tradeoffs influence mortality associated with the amphibian pathogen Batrachochytrium dendrobatidis. Oikos 118:783–791Google Scholar
  26. Goka K, Yokoyama J, Une Y, Kuroki T, Suzuki K, Nakahara M, Kobayashi A, Inaba S, Mizutani T, Hyatt AD (2009) Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan. Mol Ecol 18:4757–4774CrossRefPubMedGoogle Scholar
  27. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Eugene CY, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103CrossRefPubMedGoogle Scholar
  28. Hero J-M, Gillespie GR (1997) Epidemic disease and amphibian declines in Australia. Conserv Biol 11:1023–1025Google Scholar
  29. Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216Google Scholar
  30. Knapp RA, Fellers GM, Kleeman PM, Miller DA, Vredenburg VT, Rosenblum EB, Briggs CJ (2016) Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors. Proc Natl Acad Sci U S A 113:11889–11894Google Scholar
  31. Kolby JE, Daszak P (2016) The emerging amphibian fungal disease, chytridiomycosis: a key example of the global phenomenon of wildlife emerging infectious diseases. Microbiol Spectr 4:El10-0004-2015Google Scholar
  32. Kosch TA, Bataille A, Didinger C, Eimes JA, Rodriguez-Brenes S, Ryan MJ, Waldman B (2016) Major histocompatibility complex selection dynamics in pathogen-infected tungara frog (Physalaemus pustulosus) populations. Biol Lett 12:20160345CrossRefPubMedGoogle Scholar
  33. Kosch TA, Eimes JA, Didinger C, Brannelly LA, Waldman B, Berger L, Skerratt LF (2017) Characterization of MHC class IA in the endangered southern corroboree frog. Immunogenetics 69:165–174CrossRefPubMedGoogle Scholar
  34. Lau Q, Igawa T, Komaki S, Satta Y (2016) Characterisation of major histocompatibility complex class I genes in Japanese Ranidae frogs. Immunogenetics 68:797–806CrossRefPubMedPubMedCentralGoogle Scholar
  35. Laurance WF, McDonald KR, Speare R (1996) Epidemic disease and the catastrophic decline of Australian rain forest frogs. Conserv Biol 10:406–413CrossRefGoogle Scholar
  36. Luquet E, Garner TW, Léna JP, Bruel C, Joly P, Lengagne T, Grolet O, Plénet S (2012) Genetic erosion in wild populations makes resistance to a pathogen more costly. Evolution 66:1942–1952CrossRefPubMedGoogle Scholar
  37. Mak TW, Saunders ME, Jett BD (2014) The major histocompatibility complex. Primer to the immune response, 2nd edn. Academic Cell, Burlington, pp 143–159Google Scholar
  38. Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W, Ducatelle R,  Fisher MC,Woeltjes A, Bosman W, Chiers K, Bossuyt F, Pasmans F (2013) Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci U S A  110:15325–15329Google Scholar
  39. Martel A, Blooi M, Adriaensen C, Van Rooij P, Beukema W, Fisher MC, Farrer RA, Schmidt BR, Tobler U, Goka K, Lips KR, Muletz C, Zamudio KR, Bosch J, Lotters S, Wombwell E, Garner TW, Cunningham AA, Spitzen-van der Sluijs A, Salvidio S, Ducatelle R, Nishikawa K, Nguyen TT, Kolby JE, Van Bocxlaer I, Bossuyt F, Pasmans F (2014) Wildlife disease. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346:630–631CrossRefPubMedGoogle Scholar
  40. McMahon TA, Sears BF, Venesky MD, Bessler SM, Brown JM, Deutsch K, Halstead NT, Lentz G, Tenouri N, Young S, Civitello DJ, Ortega N, Fites JS, Reinert LK, Rollins-Smith LA, Raffel TR, Rohr JR (2014) Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature 511:224–227CrossRefPubMedPubMedCentralGoogle Scholar
  41. Misch EA, Hawn TR (2008) Toll-like receptor polymorphisms and susceptibility to human disease. Clin Sci 114:347–360CrossRefPubMedGoogle Scholar
  42. Morehouse EA, James TY, Ganley AR, Vilgalys R, Berger L, Murphy PJ, Longcore JE (2003) Multilocus sequence typing suggests the chytrid pathogen of amphibians is a recently emerged clone. Mol Ecol 12:395–403CrossRefPubMedGoogle Scholar
  43. Myers JM, Ramsey JP, Blackman AL, Nichols AE, Minbiole KP, Harris RN (2012) Synergistic inhibition of the lethal fungal pathogen Batrachochytrium dendrobatidis: the combined effect of symbiotic bacterial metabolites and antimicrobial peptides of the frog Rana muscosa. J Chem Ecol 38:958–965CrossRefPubMedGoogle Scholar
  44. Nowak MA, Tarczy-Hornoch K, Austyn JM (1992) The optimal number of major histocompatibility complex molecules in an individual. Proc Natl Acad Sci U S A 89:10896–10899Google Scholar
  45. Pessier AP, Nichols DK, Longcore JE, Fuller MS (1999) Cutaneous chytridiomycosis in poison dart frogs (Dendrobates spp.) and White’s tree frogs (Litoria caerulea). J Vet Diagn Investig 11:194–199Google Scholar
  46. Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21PubMedGoogle Scholar
  47. Poorten TJ, Rosenblum EB (2016) Comparative study of host response to chytridiomycosis in a susceptible and a resistant toad species. Mol Ecol 25:5663–5679CrossRefPubMedGoogle Scholar
  48. Price SJ, Garner TW, Balloux F, Ruis C, Paszkiewicz KH, Moore K, Griffiths AG (2015) A de novo assembly of the common frog (Rana temporaria) transcriptome and comparison of transcription following exposure to Ranavirus and Batrachochytrium dendrobatidis. PLoS One 10:e0130500CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ramirez-Garces D, Camborde L, Pel MJ, Jauneau A, Martinez Y, Neant I, Leclerc C, Moreau M, Dumas B, Gaulin E (2016) CRN13 candidate effectors from plant and animal eukaryotic pathogens are DNA-binding proteins which trigger host DNA damage response. New Phytol 210:602–617CrossRefPubMedGoogle Scholar
  50. Ramsey JP, Reinert LK, Harper LK, Woodhams DC, Rollins-Smith LA (2010) Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the South African clawed frog, Xenopus laevis. Infect Immun 78:3981–3992CrossRefPubMedPubMedCentralGoogle Scholar
  51. Richmond JQ, Savage AE, Zamudio KR, Rosenblum EB (2009) Toward immunogenetic studies of amphibian chytridiomycosis: linking innate and acquired immunity. Bioscience 59:311–320CrossRefGoogle Scholar
  52. Robert J, Ohta Y (2009) Comparative and developmental study of the immune system in Xenopus. Dev Dynam 238:1249–1270CrossRefGoogle Scholar
  53. Rodriguez D, Becker CG, Pupin NC, Haddad CF, Zamudio KR (2014) Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic Forest of Brazil. Mol Ecol 23:774–787CrossRefPubMedGoogle Scholar
  54. Rollins-Smith LA (1998) Metamorphosis and the amphibian immune system. Immunol Rev 166:221–230Google Scholar
  55. Rollins-Smith LA (2009) The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochim Biophys Acta 1788:1593–1599CrossRefPubMedGoogle Scholar
  56. Rollins-Smith LA (2017) Amphibian immunity-stress, disease, and climate change. Dev Comp Immunol 66:111–119Google Scholar
  57. Rollins-Smith LA, Conlon JM (2005) Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations. Dev Comp Immunol 29:589–598CrossRefPubMedGoogle Scholar
  58. Rollins-Smith LA, Ramsey JP, Reinert LK, Woodhams DC, Livo LJ, Carey C (2009) Immune defenses of Xenopus laevis against Batrachochytrium dendrobatidis. Front Biosci 1:68–91CrossRefGoogle Scholar
  59. Rollins-Smith LA, Ramsey JP, Pask JD, Reinert LK, Woodhams DC (2011) Amphibian immune defenses against chytridiomycosis: impacts of changing environments. Integr Comp Biol 51:552–562CrossRefPubMedGoogle Scholar
  60. Rosenblum EB, Poorten TJ, Settles M, Murdoch GK, Robert J, Maddox N, Eisen MB (2009) Genome-wide transcriptional response of Silurana (Xenopus) tropicalis to infection with the deadly chytrid fungus. PLoS One 4:e6494CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rosenblum EB, Poorten TJ, Settles M, Murdoch GK (2012) Only skin deep: shared genetic response to the deadly chytrid fungus in susceptible frog species. Mol Ecol 21:3110–3120CrossRefPubMedGoogle Scholar
  62. Savage AE, Zamudio KR (2011) MHC genotypes associate with resistance to a frog-killing fungus. Proc Natl Acad Sci U S A 108:16705–16710CrossRefPubMedPubMedCentralGoogle Scholar
  63. Savage AE, Zamudio KR (2016) Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations. Proc R Soc B 283:20153115CrossRefPubMedPubMedCentralGoogle Scholar
  64. Scheele BC, Skerratt LF, Grogan LF, Hunter DA, Clemann N, McFadden M, Newell D, Hosking CJ, Gillespie GR, Heard GW, Brannelly L, Roberts AA, Berger L (2017) After the epidemic: ongoing declines, stablizations and recoveries in amphibians afflicted by chytridiomycosis. Biol Conserv 206:37–46Google Scholar
  65. Slade RW (1992) Limited MHC polymorphism in the southern elephant seal: implications for MHC evolution and marine mammal population biology. Proc R Soc B 249:163–171CrossRefPubMedGoogle Scholar
  66. Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL, Wiley DC (1994) Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 368:215–221CrossRefPubMedGoogle Scholar
  67. Stice MJ, Briggs CJ (2010) Immunization is ineffective at preventing infection and mortality due to the amphibian chytrid fungus Batrachochytrium dendrobatidis. J Wildl Dis 46:70–77CrossRefPubMedGoogle Scholar
  68. Talley BL, Muletz CR, Vredenburg VT, Fleischer RC, Lips KR (2015) A century of Batrachochytrium dendrobatidis in Illinois amphibians (1888–1989). Biol Conserv 182:254–261CrossRefGoogle Scholar
  69. Taylor SK, Williams ES, Thorne ET, Mills KW, Withers DI, Pier AC (1999) Causes of mortality of the Wyoming toad. J Wildl Dis 35:49–57Google Scholar
  70. Teacher AG, Garner TW, Nichols RA (2009) Evidence for directional selection at a novel major histocompatibility class I marker in wild common frogs (Rana temporaria) exposed to a viral pathogen (Ranavirus). PLoS One 4:e4616CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tracy KE, Kiemnec-Tyburczy KM, Dewoody JA, Parra-Olea G, Zamudio KR (2015) Positive selection drives the evolution of a major histocompatibility complex gene in an endangered Mexican salamander species complex. Immunogenetics 67:323–335CrossRefPubMedGoogle Scholar
  72. Van Rooij P, Martel A, D'Herde K, Brutyn M, Croubels S, Ducatelle R, Haesebrouck F, Pasmans F (2012) Germ tube mediated invasion of Batrachochytrium dendrobatidis in amphibian skin is host dependent. PLoS One 7:e41481Google Scholar
  73. Voyles J, Young S, Berger L, Campbell C, Voyles WF, Dinudom A, Cook D, Webb R, Alford RA, Skerratt LF, Speare R (2009) Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326:582–585Google Scholar
  74. Wake DB (1991) Declining amphibian populations. Science 253:860CrossRefPubMedGoogle Scholar
  75. Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci U S A 105(Suppl 1):11466–11473CrossRefPubMedPubMedCentralGoogle Scholar
  76. Waldman B, Tocher M (1998) Behavioral ecology, genetic diversity, and declining amphibian populations. In: Caro T (ed) Behavioral ecology and conservation biology. Oxford University Press, New York, pp 394–443Google Scholar
  77. Wegner K, Reusch T, Kalbe M (2003) Multiple parasites are driving major histocompatibility complex polymorphism in the wild. J Evol Biol 16:224–232CrossRefPubMedGoogle Scholar
  78. Woodhams DC, Ardipradja K, Alford RA, Marantelli G, Reinert LK, Rollins-Smith LA (2007) Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses. Anim Conserv 10:409–417CrossRefGoogle Scholar
  79. Woodhams DC, Bell SC, Bigler L, Caprioli RM, Chaurand P, Lam BA, Reinert LK, Stalder U, Vazquez VM, Schliep K, Hertz A, Rollins-Smith LA (2016) Life history linked to immune investment in developing amphibians. Conserv Physiol 4:cow025Google Scholar
  80. Young S, Whitehorn P, Berger L, Skerratt LF, Speare R, Garland S, Webb R (2014) Defects in host immune function in tree frogs with chronic chytridiomycosis. PLoS One 9:e107284CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zhu R, Chen ZY, Wang J, Yuan JD, Liao XY, Gui JF, Zhang QY (2014) Extensive diversification of MHC in Chinese giant salamanders Andrias davidianus (Anda-MHC) reveals novel splice variants. Dev Comp Immunol 42:311–322CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratory of Behavioral and Population Ecology, School of Biological SciencesSeoul National UniversitySeoulSouth Korea

Personalised recommendations