, Volume 68, Issue 8, pp 677–691 | Cite as

The role of MHC class Ib-restricted T cells during infection

  • Courtney K. Anderson
  • Laurent Brossay


Even though major histocompatibility complex (MHC) class Ia and many Ib molecules have similarities in structure, MHC class Ib molecules tend to have more specialized functions, which include the presentation of non-peptidic antigens to non-classical T cells. Likewise, non-classical T cells also have unique characteristics, including an innate-like phenotype in naïve animals and rapid effector functions. In this review, we discuss the role of MAIT and NKT cells during infection but also the contribution of less studied MHC class Ib-restricted T cells such as Qa-1-, Qa-2-, and M3-restricted T cells. We focus on describing the types of antigens presented to non-classical T cells, their response and cytokine profile following infection, as well as the overall impact of these T cells to the immune system.


Non-classical T cells Infectious diseases MHC class Ib NKT and MAIT cells 



We would like to thank Timothy Erick for the critical reading of the manuscript. This work was supported by National Institutes of Health Research Grant RO1 AI46709 and AAI Careers in Immunology Fellowship (L.B.) and National Institutes of Health Fellowship F31 AI124556 (C. K. A.)


  1. Aldrich CJ, DeCloux A, Woods AS, Cotter RJ, Soloski MJ, Forman J (1994) Identification of a Tap-dependent leader peptide recognized by alloreactive T cells specific for a class Ib antigen. Cell 79:649–658PubMedCrossRefGoogle Scholar
  2. Amiot L, Vu N, Samson M (2014) Immunomodulatory properties of HLA-G in infectious diseases. J Immunol Res 2014:298569. doi: 10.1155/2014/298569 PubMedPubMedCentralCrossRefGoogle Scholar
  3. An D et al. (2014) Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156:123–133. doi: 10.1016/j.cell.2013.11.042 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anderson G, Owen JJ, Moore NC, Jenkinson EJ (1994) Thymic epithelial cells provide unique signals for positive selection of CD4 + CD8+ thymocytes in vitro. J Exp Med 179:2027–2031PubMedCrossRefGoogle Scholar
  5. Attinger A et al. (2005) Molecular basis for the high affinity interaction between the thymic leukemia antigen and the CD8alphaalpha molecule. J Immunol (Baltimore, Md : 1950) 174:3501–3507CrossRefGoogle Scholar
  6. Beckman EM, Porcelli SA, Morita CT, Behar SM, Furlong ST, Brenner MB (1994) Recognition of a lipid antigen by CD1-restricted alpha beta + T cells. Nature 372:691–694. doi: 10.1038/372691a0 PubMedCrossRefGoogle Scholar
  7. Bedel R, Matsuda JL, Brigl M, White J, Kappler J, Marrack P, Gapin L (2012) Lower TCR repertoire diversity in Traj18-deficient mice. Nat Immunol 13:705–706. doi: 10.1038/ni.2347 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Behar SM, Dascher CC, Grusby MJ, Wang CR, Brenner MB (1999) Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J Exp Med 189:1973–1980PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bendelac A (1995) Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J Exp Med 182:2091–2096PubMedCrossRefGoogle Scholar
  10. Bosselut R, Zhang W, Ashe JM, Kopacz JL, Samelson LE, Singer A (1999) Association of the adaptor molecule LAT with CD4 and CD8 coreceptors identifies a new coreceptor function in T cell receptor signal transduction. J Exp Med 190:1517–1526PubMedPubMedCentralCrossRefGoogle Scholar
  11. Boucherma R et al. (2012) Loss of central and peripheral CD8+ T-cell tolerance to HFE in mouse models of human familial hemochromatosis. Eur J Immunol 42:851–862. doi: 10.1002/eji.201141664 PubMedCrossRefGoogle Scholar
  12. Bouwer HG, Seaman MS, Forman J, Hinrichs DJ (1997) MHC class Ib-restricted cells contribute to antilisterial immunity: evidence for Qa-1b as a key restricting element for Listeria-specific CTLs. J Immunol (Baltimore, MD : 1950) 159:2795–2801Google Scholar
  13. Boyse EA, Old LJ, Luell S (1964) Genetic determination of the Tl (Thymusleukaemia) antigen in the mouse. Nature 201:779PubMedCrossRefGoogle Scholar
  14. Braaten DC, McClellan JS, Messaoudi I, Tibbetts SA, McClellan KB, Nikolich-Zugich J, Virgin HW (2006) Effective control of chronic gamma-herpesvirus infection by unconventional MHC class Ia-independent CD8 T cells. PLoS Pathog 2:e37. doi: 10.1371/journal.ppat.0020037 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Braud V, Jones EY, McMichael A (1997) The human major histocompatibility complex class Ib molecule HLA-E binds signal sequence-derived peptides with primary anchor residues at positions 2 and 9. Eur J Immunol 27:1164–1169. doi: 10.1002/eji.1830270517 PubMedCrossRefGoogle Scholar
  16. Braud VM et al. (1998) HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391:795–799. doi: 10.1038/35869 PubMedCrossRefGoogle Scholar
  17. Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB (2003) Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 4:1230–1237. doi: 10.1038/ni1002 PubMedCrossRefGoogle Scholar
  18. Brutkiewicz RR, Bennink JR, Yewdell JW, Bendelac A (1995) TAP-independent, beta 2-microglobulin-dependent surface expression of functional mouse CD1.1. J Exp Med 182:1913–1919PubMedCrossRefGoogle Scholar
  19. Byers DE, Fischer LK (1998) H2-M3 presents a nonformylated viral epitope to CTLs generated in vitro. J Immunol (Baltimore, MD : 1950) 161:90–96Google Scholar
  20. Caccamo N et al. (2015) Human CD8 T lymphocytes recognize Mycobacterium tuberculosis antigens presented by HLA-E during active tuberculosis and express type 2 cytokines. Eur J Immunol 45:1069–1081. doi: 10.1002/eji.201445193 PubMedCrossRefGoogle Scholar
  21. Cardell S, Tangri S, Chan S, Kronenberg M, Benoist C, Mathis D (1995) CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J Exp Med 182:993–1004PubMedCrossRefGoogle Scholar
  22. Chen L, Jay DC, Fairbanks JD, He X, Jensen PE (2011) An MHC class Ib-restricted CD8+ T cell response to lymphocytic choriomeningitis virus. J Immunol (Baltimore, Md : 1950) 187:6463–6472. doi: 10.4049/jimmunol.1101171 CrossRefGoogle Scholar
  23. Chen YT, Obata Y, Stockert E, Old LJ (1985) Thymus-leukemia (TL) antigens of the mouse. Analysis of TL mRNA and TL cDNA TL+ and TL- strains. J Exp Med 162:1134–1148PubMedCrossRefGoogle Scholar
  24. Cheroutre H, Lambolez F (2008) Doubting the TCR coreceptor function of CD8alphaalpha. Immunity 28:149–159. doi: 10.1016/j.immuni.2008.01.005 PubMedCrossRefGoogle Scholar
  25. Chiu NM, Chun T, Fay M, Mandal M, Wang CR (1999a) The majority of H2-M3 is retained intracellularly in a peptide-receptive state and traffics to the cell surface in the presence of N-formylated peptides. J Exp Med 190:423–434PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chiu NM, Wang B, Kerksiek KM, Kurlander R, Pamer EG, Wang CR (1999b) The selection of M3-restricted T cells is dependent on M3 expression and presentation of N-formylated peptides in the thymus. J Exp Med 190:1869–1878PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cho H, Bediako Y, Xu H, Choi HJ, Wang CR (2011) Positive selecting cell type determines the phenotype of MHC class Ib-restricted CD8+ T cells. Proc Natl Acad Sci U S A 108:13241–13246. doi: 10.1073/pnas.1105118108 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chua WJ, Truscott SM, Eickhoff CS, Blazevic A, Hoft DF, Hansen TH (2012) Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection. Infect Immun 80:3256–3267. doi: 10.1128/IAI.00279-12 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chun T, Grandea AG 3rd, Lybarger L, Forman J, Van Kaer L, Wang CR (2001a) Functional roles of TAP and tapasin in the assembly of M3-N-formylated peptide complexes. J Immunol (Baltimore, Md : 1950) 167:1507–1514CrossRefGoogle Scholar
  30. Chun T, Serbina NV, Nolt D, Wang B, Chiu NM, Flynn JL, Wang CR (2001b) Induction of M3-restricted cytotoxic T lymphocyte responses by N-formylated peptides derived from Mycobacterium tuberculosis. J Exp Med 193:1213–1220PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cogen AL, Moore TA (2009) Beta2-microglobulin-dependent bacterial clearance and survival during murine Klebsiella pneumoniae bacteremia. Infect Immun 77:360–366. doi: 10.1128/IAI.00909-08 PubMedCrossRefGoogle Scholar
  32. Comiskey M, Goldstein CY, De Fazio SR, Mammolenti M, Newmark JA, Warner CM (2003) Evidence that HLA-G is the functional homolog of mouse Qa-2, the Ped gene product. Hum Immunol 64:999–1004PubMedPubMedCentralCrossRefGoogle Scholar
  33. Connolly DJ et al. (1993) A cDNA clone encoding the mouse Qa-1a histocompatibility antigen and proposed structure of the putative peptide binding site. J Immunol (Baltimore, Md : 1950) 151:6089–6098Google Scholar
  34. Cook RG, Landolfi NF (1983) Expression of the thymus leukemia antigen by activated peripheral T lymphocytes. J Exp Med 158:1012–1017PubMedCrossRefGoogle Scholar
  35. Corbett AJ et al. (2014) T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509:361–365. doi: 10.1038/nature13160 PubMedCrossRefGoogle Scholar
  36. Costa M et al. (2015) Lymphocyte gene expression signatures from patients and mouse models of hereditary hemochromatosis reveal a function of HFE as a negative regulator of CD8+ T-lymphocyte activation and differentiation in vivo. PLoS One 10:e0124246. doi: 10.1371/journal.pone.0124246 PubMedPubMedCentralCrossRefGoogle Scholar
  37. D’Orazio SE, Halme DG, Ploegh HL, Starnbach MN (2003) Class Ia MHC-deficient BALB/c mice generate CD8+ T cell-mediated protective immunity against Listeria monocytogenes infection. J Immunol (Baltimore, MD : 1950) 171:291–298CrossRefGoogle Scholar
  38. D’Orazio SE, Shaw CA, Starnbach MN (2006) H2-M3-restricted CD8+ T cells are not required for MHC class Ib-restricted immunity against Listeria monocytogenes. J Exp Med 203:383–391. doi: 10.1084/jem.20052256 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Davies A et al. (2003) A peptide from heat shock protein 60 is the dominant peptide bound to Qa-1 in the absence of the MHC class ia leader sequence peptide Qdm. J Immunol (Baltimore, Md : 1950) 170:5027–5033CrossRefGoogle Scholar
  40. Davis BK, Cook RG, Rich RR, Rodgers JR (2002) Hyperconservation of the putative antigen recognition site of the MHC class I-b molecule TL in the subfamily Murinae: evidence that thymus leukemia antigen is an ancient mammalian gene. J Immunol (Baltimore, MD : 1950) 169:6890–6899CrossRefGoogle Scholar
  41. de la Salle H et al. (2005) Assistance of microbial glycolipid antigen processing by CD1e. Science 310:1321–1324. doi: 10.1126/science.1115301 PubMedCrossRefGoogle Scholar
  42. Delker SL, West AP Jr, McDermott L, Kennedy MW, Bjorkman PJ (2004) Crystallographic studies of ligand binding by Zn-alpha2-glycoprotein. J Struct Biol 148:205–213. doi: 10.1016/j.jsb.2004.04.009 PubMedCrossRefGoogle Scholar
  43. Devlin JJ, Weiss EH, Paulson M, Flavell RA (1985) Duplicated gene pairs and alleles of class I genes in the Qa2 region of the murine major histocompatibility complex: a comparison. EMBO J 4:3203–3207PubMedPubMedCentralGoogle Scholar
  44. Diehl M, Munz C, Keilholz W, Stevanovic S, Holmes N, Loke YW, Rammensee HG (1996) Nonclassical HLA-G molecules are classical peptide presenters. Curr Biol 6:305–314PubMedCrossRefGoogle Scholar
  45. Doi T, Yamada H, Yajima T, Wajjwalku W, Hara T, Yoshikai Y (2007) H2-M3-restricted CD8+ T cells induced by peptide-pulsed dendritic cells confer protection against Mycobacterium tuberculosis. J Immunol (Baltimore, Md : 1950) 178:3806–3813CrossRefGoogle Scholar
  46. Dunne MR, Elliott L, Hussey S, Mahmud N, Kelly J, Doherty DG, Feighery CF (2013) Persistent changes in circulating and intestinal gammadelta T cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease. PLoS One 8:e76008. doi: 10.1371/journal.pone.0076008 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Eckle SB et al. (2014) A molecular basis underpinning the T cell receptor heterogeneity of mucosal-associated invariant T cells. J Exp Med 211:1585–1600. doi: 10.1084/jem.20140484 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Edholm ES et al. (2013) Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians. Proc Natl Acad Sci U S A 110:14342–14347. doi: 10.1073/pnas.1309840110 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Edholm ES, Grayfer L, De Jesus AF, Robert J (2015) Nonclassical MHC-restricted invariant Valpha6 T cells are critical for efficient early innate antiviral immunity in the amphibian Xenopus laevis. J Immunol (Baltimore, Md : 1950) 195:576–586. doi: 10.4049/jimmunol.1500458 CrossRefGoogle Scholar
  50. Feder JN et al. (1996) A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13:399–408. doi: 10.1038/ng0896-399 PubMedCrossRefGoogle Scholar
  51. Feder JN et al. (1997) The hemochromatosis founder mutation in HLA-H disrupts beta2-microglobulin interaction and cell surface expression. J Biol Chem 272:14025–14028PubMedCrossRefGoogle Scholar
  52. Felio K et al. (2009) CD1-restricted adaptive immune responses to Mycobacteria in human group 1 CD1 transgenic mice. J Exp Med 206:2497–2509. doi: 10.1084/jem.20090898 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Fernandez CS, Amarasena T, Kelleher AD, Rossjohn J, McCluskey J, Godfrey DI, Kent SJ (2015) MAIT cells are depleted early but retain functional cytokine expression in HIV infection. Immunol Cell Biol 93:177–188. doi: 10.1038/icb.2014.91 PubMedCrossRefGoogle Scholar
  54. Fischer K et al. (2004) Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Nat Acad Sci USA 101:10685–10690. doi: 10.1073/pnas.0403787101 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Fragoso G, Lamoyi E, Mellor A, Lomeli C, Govezensky T, Sciutto E (1996) Genetic control of susceptibility to Taenia crassiceps cysticercosis. Parasitology 112(Pt 1):119–124PubMedCrossRefGoogle Scholar
  56. Fragoso G, Lamoyi E, Mellor A, Lomeli C, Hernandez M, Sciutto E (1998) Increased resistance to Taenia crassiceps murine cysticercosis in Qa-2 transgenic mice. Infect Immun 66:760–764PubMedPubMedCentralGoogle Scholar
  57. Fujii T, Ishitani A, Geraghty DE (1994) A soluble form of the HLA-G antigen is encoded by a messenger ribonucleic acid containing intron 4. J Immunol (Baltimore, MD : 1950) 153:5516–5524Google Scholar
  58. Gadola SD et al. (2002) Structure of human CD1b with bound ligands at 2.3 A, a maze for alkyl chains. Nat Immunol 3:721–726. doi: 10.1038/ni821 PubMedCrossRefGoogle Scholar
  59. Garcia P et al. (2002) Human T cell receptor-mediated recognition of HLA-E. Eur J Immunol 32:936–944. doi: 10.1002/1521-4141(200204)32:4<936::AID-IMMU936>3.0.CO;2-M
  60. Georgel P, Radosavljevic M, Macquin C, Bahram S (2011) The non-conventional MHC class I MR1 molecule controls infection by Klebsiella pneumoniae in mice. Mol Immunol 48:769–775. doi: 10.1016/j.molimm.2010.12.002 PubMedCrossRefGoogle Scholar
  61. Geraghty DE, Stockschleader M, Ishitani A, Hansen JA (1992) Polymorphism at the HLA-E locus predates most HLA-A and -B polymorphism. Hum Immunol 33:174–184PubMedCrossRefGoogle Scholar
  62. Gold MC et al. (2010) Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol 8:e1000407. doi: 10.1371/journal.pbio.1000407 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gold MC et al. (2014) MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage. J Exp Med 211:1601–1610. doi: 10.1084/jem.20140507 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Goswami T, Andrews NC (2006) Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing. J Biol Chem 281:28494–28498. doi: 10.1074/jbc.C600197200 PubMedCrossRefGoogle Scholar
  65. Grimsley C et al. (2002) Definitive high resolution typing of HLA-E allelic polymorphisms: identifying potential errors in existing allele data. Tissue Antigens 60:206–212PubMedCrossRefGoogle Scholar
  66. Gulden PH et al. (1996) A Listeria monocytogenes pentapeptide is presented to cytolytic T lymphocytes by the H2-M3 MHC class Ib molecule. Immunity 5:73–79PubMedCrossRefGoogle Scholar
  67. Guleria I, Sayegh MH (2007) Maternal acceptance of the fetus: true human tolerance. J Immunol (Baltimore, MD : 1950) 178:3345–3351CrossRefGoogle Scholar
  68. Hamilton SE, Porter BB, Messingham KA, Badovinac VP, Harty JT (2004) MHC class Ia-restricted memory T cells inhibit expansion of a nonprotective MHC class Ib (H2-M3)-restricted memory response. Nat Immunol 5:159–168. doi: 10.1038/ni1026 PubMedCrossRefGoogle Scholar
  69. Hanau D et al. (1994) CD1 expression is not affected by human peptide transporter deficiency. Hum Immunol 41:61–68PubMedCrossRefGoogle Scholar
  70. Hansen SG et al. (2016) Broadly targeted CD8(+) T cell responses restricted by major histocompatibility complex E. Science 351:714–720. doi: 10.1126/science.aac9475 PubMedCrossRefGoogle Scholar
  71. He X, Tabaczewski P, Ho J, Stroynowski I, Garcia KC (2001) Promiscuous antigen presentation by the nonclassical MHC Ib Qa-2 is enabled by a shallow, hydrophobic groove and self-stabilized peptide conformation. Structure 9:1213–1224PubMedCrossRefGoogle Scholar
  72. Heinzel AS et al. (2002) HLA-E-dependent presentation of Mtb-derived antigen to human CD8+ T cells. J Exp Med 196:1473–1481PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hershberg R, Eghtesady P, Sydora B, Brorson K, Cheroutre H, Modlin R, Kronenberg M (1990) Expression of the thymus leukemia antigen in mouse intestinal epithelium. Proc Nat Acad Sci USA 87:9727–9731PubMedPubMedCentralCrossRefGoogle Scholar
  74. Hirai K, Hussey HJ, Barber MD, Price SA, Tisdale MJ (1998) Biological evaluation of a lipid-mobilizing factor isolated from the urine of cancer patients. Cancer Res 58:2359–2365PubMedGoogle Scholar
  75. Hofstetter AR, Evavold BD, Lukacher AE (2013) Peptide immunization elicits polyomavirus-specific MHC class ib-restricted CD8 T cells in MHC class ia allogeneic mice. Viral Immunol 26:109–113. doi: 10.1089/vim.2012.0052 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Holcombe HR, Castano AR, Cheroutre H, Teitell M, Maher JK, Peterson PA, Kronenberg M (1995) Nonclassical behavior of the thymus leukemia antigen: peptide transporter-independent expression of a nonclassical class I molecule. J Exp Med 181:1433–1443PubMedCrossRefGoogle Scholar
  77. Holzapfel KL, Tyznik AJ, Kronenberg M, Hogquist KA (2014) Antigen-dependent versus -independent activation of invariant NKT cells during infection. J Immunol (Baltimore, MD : 1950) 192:5490–5498. doi: 10.4049/jimmunol.1400722 CrossRefGoogle Scholar
  78. Horuzsko A, Antoniou J, Tomlinson P, Portik-Dobos V, Mellor AL (1997) HLA-G functions as a restriction element and a transplantation antigen in mice. Int Immunol 9:645–653PubMedCrossRefGoogle Scholar
  79. Huang Y et al. (2011) Mucosal memory CD8(+) T cells are selected in the periphery by an MHC class I molecule. Nat Immunol 12:1086–1095. doi: 10.1038/ni.2106 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Hunt JS, Andrews GK, Wood GW (1987) Normal trophoblasts resist induction of class I HLA. J Immunol (Baltimore, MD : 1950) 138:2481–2487Google Scholar
  81. Ishitani A, Geraghty DE (1992) Alternative splicing of HLA-G transcripts yields proteins with primary structures resembling both class I and class II antigens. Proc Nat Acad Sci USA 89:3947–3951PubMedPubMedCentralCrossRefGoogle Scholar
  82. Ito Y et al. (2013) Helicobacter pylori cholesteryl alpha-glucosides contribute to its pathogenicity and immune response by natural killer T cells. PLoS One 8:e78191. doi: 10.1371/journal.pone.0078191 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Jahng A, Maricic I, Aguilera C, Cardell S, Halder RC, Kumar V (2004) Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J Exp Med 199:947–957. doi: 10.1084/jem.20031389 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Jay DC, Reed-Loisel LM, Jensen PE (2008) Polyclonal MHC Ib-restricted CD8+ T cells undergo homeostatic expansion in the absence of conventional MHC-restricted T cells. J Immunol (Baltimore, MD : 1950) 180:2805–2814CrossRefGoogle Scholar
  85. Jensen KD et al. (2008) Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity 29:90–100. doi: 10.1016/j.immuni.2008.04.022 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Jiang J et al. (2014) Mucosal-associated invariant T-cell function is modulated by programmed death-1 signaling in patients with active tuberculosis. Am J Respir Crit Care Med 190:329–339. doi: 10.1164/rccm.201401-0106OC PubMedGoogle Scholar
  87. Jorgensen PB, Livbjerg AH, Hansen HJ, Petersen T, Hollsberg P (2012) Epstein-Barr virus peptide presented by HLA-E is predominantly recognized by CD8(bright) cells in multiple sclerosis patients. PLoS One 7:e46120. doi: 10.1371/journal.pone.0046120 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Joyce S, Tabaczewski P, Angeletti RH, Nathenson SG, Stroynowski I (1994) A nonpolymorphic major histocompatibility complex class Ib molecule binds a large array of diverse self-peptides. J Exp Med 179:579–588PubMedCrossRefGoogle Scholar
  89. Kawakami K et al. (2003) Critical role of Valpha14+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection. Eur J Immunol 33:3322–3330. doi: 10.1002/eji.200324254 PubMedCrossRefGoogle Scholar
  90. Kawashima T et al. (2003) Cutting edge: major CD8 T cell response to live bacillus Calmette-Guerin is mediated by CD1 molecules. J Immunol (Baltimore, Md : 1950) 170:5345–5348CrossRefGoogle Scholar
  91. Kerksiek KM, Busch DH, Pilip IM, Allen SE, Pamer EG (1999) H2-M3-restricted T cells in bacterial infection: rapid primary but diminished memory responses. J Exp Med 190:195–204PubMedPubMedCentralCrossRefGoogle Scholar
  92. Kern P, Hussey RE, Spoerl R, Reinherz EL, Chang HC (1999) Expression, purification, and functional analysis of murine ectodomain fragments of CD8alphaalpha and CD8alphabeta dimers. J Biol Chem 274:27237–27243PubMedCrossRefGoogle Scholar
  93. Kim S et al. (2011) Human cytomegalovirus microRNA miR-US4-1 inhibits CD8(+) T cell responses by targeting the aminopeptidase ERAP1. Nat Immunol 12:984–991. doi: 10.1038/ni.2097 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Kinjo Y et al. (2011) Invariant natural killer T cells recognize glycolipids from pathogenic gram-positive bacteria. Nat Immunol 12:966–974. doi: 10.1038/ni.2096 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kinjo Y et al. (2006) Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 7:978–986. doi: 10.1038/ni1380 PubMedCrossRefGoogle Scholar
  96. Kinjo Y et al. (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–525. doi: 10.1038/nature03407 PubMedCrossRefGoogle Scholar
  97. Kirszenbaum M, Moreau P, Gluckman E, Dausset J, Carosella E (1994) An alternatively spliced form of HLA-G mRNA in human trophoblasts and evidence for the presence of HLA-G transcript in adult lymphocytes. Proc Nat Acad Sci USA 91:4209–4213PubMedPubMedCentralCrossRefGoogle Scholar
  98. Kjer-Nielsen L et al. (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491:717–723. doi: 10.1038/nature11605 PubMedGoogle Scholar
  99. Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, DeMars R (1990) A class I antigen, HLA-G, expressed in human trophoblasts. Science 248:220–223PubMedCrossRefGoogle Scholar
  100. Kumar H, Belperron A, Barthold SW, Bockenstedt LK (2000) Cutting edge: CD1d deficiency impairs murine host defense against the spirochete, borrelia burgdorferi. J Immunol (Baltimore, MD : 1950) 165:4797–4801CrossRefGoogle Scholar
  101. Kurepa Z, Su J, Forman J (2003) Memory phenotype of CD8+ T cells in MHC class ia-deficient mice. J Immunol (Baltimore, MD : 1950) 170:5414–5420CrossRefGoogle Scholar
  102. Le Bourhis L et al. (2010) Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol 11:701–708. doi: 10.1038/ni.1890 PubMedCrossRefGoogle Scholar
  103. Lebron JA et al. (1998) Crystal structure of the hemochromatosis protein HFE and characterization of its interaction with transferrin receptor. Cell 93:111–123PubMedCrossRefGoogle Scholar
  104. Lee N, Goodlett DR, Ishitani A, Marquardt H, Geraghty DE (1998a) HLA-E surface expression depends on binding of TAP-dependent peptides derived from certain HLA class I signal sequences. J Immunol (Baltimore, MD : 1950) 160:4951–4960Google Scholar
  105. Lee N, Llano M, Carretero M, Ishitani A, Navarro F, Lopez-Botet M, Geraghty DE (1998b) HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc Natl Acad Sci U S A 95:5199–5204PubMedPubMedCentralCrossRefGoogle Scholar
  106. Lee N, Malacko AR, Ishitani A, Chen MC, Bajorath J, Marquardt H, Geraghty DE (1995) The membrane-bound and soluble forms of HLA-G bind identical sets of endogenous peptides but differ with respect to TAP association. Immunity 3:591–600PubMedCrossRefGoogle Scholar
  107. Leeansyah E et al. (2013) Activation, exhaustion, and persistent decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection. Blood 121:1124–1135. doi: 10.1182/blood-2012-07-445429 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Leishman AJ et al. (2001) T cell responses modulated through interaction between CD8alphaalpha and the nonclassical MHC class I molecule. TL Sci 294:1936–1939. doi: 10.1126/science.1063564 Google Scholar
  109. Leite-De-Moraes MC et al. (1999) A distinct IL-18-induced pathway to fully activate NK T lymphocytes independently from TCR engagement. J Immunol (Baltimore, Md : 1950) 163:5871–5876Google Scholar
  110. LeMaoult J, Zafaranloo K, Le Danff C, Carosella ED (2005) HLA-G up-regulates ILT2, ILT3, ILT4, and KIR2DL4 in antigen presenting cells, NK cells, and T cells. FASEB J 19:662–664. doi: 10.1096/fj.04-1617fje PubMedGoogle Scholar
  111. Lenfant F, Pizzato N, Liang S, Davrinche C, Le Bouteiller P, Horuzsko A (2003) Induction of HLA-G-restricted human cytomegalovirus pp65 (UL83)-specific cytotoxic T lymphocytes in HLA-G transgenic mice. J Gen Virol 84:307–317. doi: 10.1099/vir.0.18735-0 PubMedCrossRefGoogle Scholar
  112. Lenz LL, Bevan MJ (1997) CTL responses to H2-M3-restricted Listeria epitopes. Immunol Rev 158:115–121PubMedCrossRefGoogle Scholar
  113. Lenz LL, Dere B, Bevan MJ (1996) Identification of an H2-M3-restricted listeria epitope: implications for antigen presentation by M3. Immunity 5:63–72PubMedPubMedCentralCrossRefGoogle Scholar
  114. Levitt JM, Howell DD, Rodgers JR, Rich RR (2001) Exogenous peptides enter the endoplasmic reticulum of TAP-deficient cells and induce the maturation of nascent MHC class I molecules. Eur J Immunol 31:1181–1190. doi: 10.1002/1521-4141(200104)31:4<1181::AID-IMMU1181>3.0.CO;2-J
  115. Lewinsohn DM, Briden AL, Reed SG, Grabstein KH, Alderson MR (2000) Mycobacterium tuberculosis-reactive CD8+ T lymphocytes: the relative contribution of classical versus nonclassical HLA restriction. J Immunol (Baltimore, Md : 1950) 165:925–930CrossRefGoogle Scholar
  116. Liu Y et al. (2003) The crystal structure of a TL/CD8alphaalpha complex at 2.1 A resolution: implications for modulation of T cell activation and memory. Immunity 18:205–215PubMedCrossRefGoogle Scholar
  117. Ljunggren HG et al. (1990) Empty MHC class I molecules come out in the cold. Nature 346:476–480. doi: 10.1038/346476a0 PubMedCrossRefGoogle Scholar
  118. Lo WF, Woods AS, DeCloux A, Cotter RJ, Metcalf ES, Soloski MJ (2000) Molecular mimicry mediated by MHC class Ib molecules after infection with gram-negative pathogens. Nat Med 6:215–218. doi: 10.1038/72329 PubMedCrossRefGoogle Scholar
  119. Lockridge JL et al. (2011) Analysis of the CD1 antigen presenting system in humanized SCID mice. PLoS One 6:e21701. doi: 10.1371/journal.pone.0021701 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Loconto J et al. (2003) Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 112:607–618PubMedCrossRefGoogle Scholar
  121. Lotter H et al. (2009) Natural killer T cells activated by a lipopeptidophosphoglycan from Entamoeba histolytica are critically important to control amebic liver abscess. PLoS Pathog 5:e1000434. doi: 10.1371/journal.ppat.1000434 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Lotter H, Jacobs T, Gaworski I, Tannich E (2006) Sexual dimorphism in the control of amebic liver abscess in a mouse model of disease. Infect Immun 74:118–124. doi: 10.1128/IAI.74.1.118-124.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Macedo MF, Porto G, Costa M, Vieira CP, Rocha B, Cruz E (2010) Low numbers of CD8+ T lymphocytes in hereditary haemochromatosis are explained by a decrease of the most mature CD8+ effector memory T cells. Clin Exp Immunol 159:363–371. doi: 10.1111/j.1365-2249.2009.04066.x PubMedPubMedCentralCrossRefGoogle Scholar
  124. Madakamutil LT et al. (2004) CD8alphaalpha-mediated survival and differentiation of CD8 memory T cell precursors. Science 304:590–593. doi: 10.1126/science.1092316 PubMedCrossRefGoogle Scholar
  125. Martin E et al. (2009) Stepwise development of MAIT cells in mouse and human. PLoS Biol 7:e54. doi: 10.1371/journal.pbio.1000054 PubMedCrossRefGoogle Scholar
  126. Mazzarino P et al. (2005) Identification of effector-memory CMV-specific T lymphocytes that kill CMV-infected target cells in an HLA-E-restricted fashion. Eur J Immunol 35:3240–3247. doi: 10.1002/eji.200535343 PubMedCrossRefGoogle Scholar
  127. McElhinny AS, Exley GE, Warner CM (2000) Painting Qa-2 onto Ped slow preimplantatiom embryos increases the rate of cleavage. Am J Reprod Immunol 44:52–58. doi: 10.1111/j.8755-8920.2000.440108.x PubMedCrossRefGoogle Scholar
  128. Meierovics A, Yankelevich WJ, Cowley SC (2013) MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection. Proc Natl Acad Sci U S A 110:E3119–E3128. doi: 10.1073/pnas.1302799110 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Miranda CJ, Makui H, Andrews NC, Santos MM (2004) Contributions of beta2-microglobulin-dependent molecules and lymphocytes to iron regulation: insights from HfeRag1(−/−) and beta2mRag1(−/−) double knock-out mice. Blood 103:2847–2849. doi: 10.1182/blood-2003-09-3300 PubMedCrossRefGoogle Scholar
  130. Morales PJ, Pace JL, Platt JS, Langat DK, Hunt JS (2007) Synthesis of beta(2)-microglobulin-free, disulphide-linked HLA-G5 homodimers in human placental villous cytotrophoblast cells. Immunology 122:179–188. doi: 10.1111/j.1365-2567.2007.02623.x PubMedPubMedCentralCrossRefGoogle Scholar
  131. Morita A et al. (1994) TL antigen as a transplantation antigen recognized by TL-restricted cytotoxic T cells. J Exp Med 179:777–784PubMedCrossRefGoogle Scholar
  132. Nagarajan NA, Gonzalez F, Shastri N (2012) Nonclassical MHC class Ib-restricted cytotoxic T cells monitor antigen processing in the endoplasmic reticulum. Nat Immunol 13:579–586. doi: 10.1038/ni.2282 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Nattermann J et al. (2005) The HLA-A2 restricted T cell epitope HCV core 35-44 stabilizes HLA-E expression and inhibits cytolysis mediated by natural killer cells. Am J Pathol 166:443–453. doi: 10.1016/S0002-9440(10)62267-5 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Old LJ, Boyse EA (1963) Antigenic properties of experimental Leukemias. I. Serological studies in vitro with spontaneous and radiation-induced Leukemias. J Natl Cancer Inst 31:977–995PubMedGoogle Scholar
  135. Olivares-Villagomez D, Mendez-Fernandez YV, Parekh VV, Lalani S, Vincent TL, Cheroutre H, Van Kaer L (2008) Thymus leukemia antigen controls intraepithelial lymphocyte function and inflammatory bowel disease. Proc Natl Acad Sci U S A 105:17931–17936. doi: 10.1073/pnas.0808242105 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Pardigon N et al. (2006) CD8 alpha alpha-mediated intraepithelial lymphocyte snatching of thymic leukemia MHC class ib molecules in vitro and in vivo. J Immunol (Baltimore, Md : 1950) 177:1590–1598CrossRefGoogle Scholar
  137. Parkkila S et al. (1997) Association of the transferrin receptor in human placenta with HFE, the protein defective in hereditary hemochromatosis. Proc Natl Acad Sci U S A 94:13198–13202PubMedPubMedCentralCrossRefGoogle Scholar
  138. Paul P et al. (2000) Identification of HLA-G7 as a new splice variant of the HLA-G mRNA and expression of soluble HLA-G5, −G6, and -G7 transcripts in human transfected cells. Hum Immunol 61:1138–1149PubMedCrossRefGoogle Scholar
  139. Pietra G, Romagnani C, Manzini C, Moretta L, Mingari MC (2010) The emerging role of HLA-E-restricted CD8+ T lymphocytes in the adaptive immune response to pathogens and tumors. J Biomed Biotechnol 2010:907092. doi: 10.1155/2010/907092 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Pietra G et al. (2003) HLA-E-restricted recognition of cytomegalovirus-derived peptides by human CD8+ cytolytic T lymphocytes. Proc Natl Acad Sci U S A 100:10896–10901. doi: 10.1073/pnas.1834449100 PubMedPubMedCentralCrossRefGoogle Scholar
  141. Porcelli S, Yockey CE, Brenner MB, Balk SP (1993) Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med 178:1–16PubMedCrossRefGoogle Scholar
  142. Porto G, Reimao R, Goncalves C, Vicente C, Justica B, de Sousa M (1994) Haemochromatosis as a window into the study of the immunological system: a novel correlation between CD8+ lymphocytes and iron overload. Eur J Haematol 52:283–290PubMedCrossRefGoogle Scholar
  143. Princiotta MF, Lenz LL, Bevan MJ, Staerz UD (1998) H2-M3 restricted presentation of a listeria-derived leader peptide. J Exp Med 187:1711–1719PubMedPubMedCentralCrossRefGoogle Scholar
  144. Rahimpour A et al. (2015) Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J Exp Med 212:1095–1108. doi: 10.1084/jem.20142110 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Rajagopalan S, Long EO (2012) KIR2DL4 (CD158d): an activation receptor for HLA-G. Front Immunol 3:258. doi: 10.3389/fimmu.2012.00258 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Reantragoon R et al. (2013) Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J Exp Med 210:2305–2320. doi: 10.1084/jem.20130958 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Reantragoon R et al. (2012) Structural insight into MR1-mediated recognition of the mucosal associated invariant T cell receptor. J Exp Med 209:761–774. doi: 10.1084/jem.20112095 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Reuben A, Phenix M, Santos MM, Lapointe R (2014) The WT hemochromatosis protein HFE inhibits CD8(+) T-lymphocyte activation. Eur J Immunol 44:1604–1614. doi: 10.1002/eji.201343955 PubMedCrossRefGoogle Scholar
  149. Riegert P, Wanner V, Bahram S (1998) Genomics, isoforms, expression, and phylogeny of the MHC class I-related MR1 gene. J Immunol (Baltimore, Md : 1950) 161:4066–4077Google Scholar
  150. Robinson PJ, Millrain M, Antoniou J, Simpson E, Mellor AL (1989) A glycophospholipid anchor is required for Qa-2-mediated T cell activation. Nature 342:85–87. doi: 10.1038/342085a0 PubMedCrossRefGoogle Scholar
  151. Rodgers JR, Cook RG (2005) MHC class Ib molecules bridge innate and acquired immunity. Nat Rev Immunol 5:459–471. doi: 10.1038/nri1635 PubMedCrossRefGoogle Scholar
  152. Rodgers JR, Mehta V, Cook RG (1995) Surface expression of beta 2-microglobulin-associated thymus-leukemia antigen is independent of TAP2. Eur J Immunol 25:1001–1007. doi: 10.1002/eji.1830250421 PubMedCrossRefGoogle Scholar
  153. Rohrlich PS et al. (2005) Direct recognition by alphabeta cytolytic T cells of Hfe, a MHC class Ib molecule without antigen-presenting function. Proc Natl Acad Sci U S A 102:12855–12860. doi: 10.1073/pnas.0502309102 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Rolph MS, Kaufmann SH (2000) Partially TAP-independent protection against Listeria monocytogenes by H2-M3-restricted CD8+ T cells. J Immunol (Baltimore, Md : 1950) 165:4575–4580CrossRefGoogle Scholar
  155. Rotzschke O, Falk K, Stevanovic S, Grahovac B, Soloski MJ, Jung G, Rammensee HG (1993) Qa-2 molecules are peptide receptors of higher stringency than ordinary class I molecules. Nature 361:642–644. doi: 10.1038/361642a0 PubMedCrossRefGoogle Scholar
  156. Rouas-Freiss N, Goncalves RM, Menier C, Dausset J, Carosella ED (1997) Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. Proc Natl Acad Sci U S A 94:11520–11525PubMedPubMedCentralCrossRefGoogle Scholar
  157. Salerno-Goncalves R, Fernandez-Vina M, Lewinsohn DM, Sztein MB (2004) Identification of a human HLA-E-restricted CD8+ T cell subset in volunteers immunized with Salmonella enterica serovar Typhi strain Ty21a typhoid vaccine. J Immunol (Baltimore, Md : 1950) 173:5852–5862CrossRefGoogle Scholar
  158. Santos M, Schilham MW, Rademakers LH, Marx JJ, de Sousa M, Clevers H (1996) Defective iron homeostasis in beta 2-microglobulin knockout mice recapitulates hereditary hemochromatosis in man. J Exp Med 184:1975–1985PubMedCrossRefGoogle Scholar
  159. Santos MM, de Sousa M, Rademakers LH, Clevers H, Marx JJ, Schilham MW (2000) Iron overload and heart fibrosis in mice deficient for both beta2-microglobulin and Rag1. Am J Pathol 157:1883–1892PubMedPubMedCentralCrossRefGoogle Scholar
  160. Scharf L et al. (2010) The 2.5 A structure of CD1c in complex with a mycobacterial lipid reveals an open groove ideally suited for diverse antigen presentation. Immunity 33:853–862. doi: 10.1016/j.immuni.2010.11.026 PubMedPubMedCentralCrossRefGoogle Scholar
  161. Schmidt CM, Garrett E, Orr HT (1997) Cytotoxic T lymphocyte recognition of HLA-G in mice. Hum Immunol 55:127–139PubMedCrossRefGoogle Scholar
  162. Schulte D et al. (2009) The HLA-E(R)/HLA-E(R) genotype affects the natural course of hepatitis C virus (HCV) infection and is associated with HLA-E-restricted recognition of an HCV-derived peptide by interferon-gamma-secreting human CD8(+) T cells. J Infect Dis 200:1397–1401. doi: 10.1086/605889 PubMedCrossRefGoogle Scholar
  163. Seach N et al. (2013) Double-positive thymocytes select mucosal-associated invariant T cells. J Immunol (Baltimore, Md : 1950) 191:6002–6009. doi: 10.4049/jimmunol.1301212 CrossRefGoogle Scholar
  164. Seaman MS, Perarnau B, Lindahl KF, Lemonnier FA, Forman J (1999) Response to Listeria monocytogenes in mice lacking MHC class Ia molecules. J Immunol (Baltimore, Md : 1950) 162:5429–5436Google Scholar
  165. Shawar SM, Vyas JM, Shen E, Rodgers JR, Rich RR (1993) Differential amino-terminal anchors for peptide binding to H-2M3a or H-2Kb and H-2Db. J Immunol (Baltimore, Md : 1950) 151:201–210Google Scholar
  166. Siddiqui S, Visvabharathy L, Wang CR (2015) Role of group 1 CD1-restricted T cells in infectious disease. Front Immunol 6:337. doi: 10.3389/fimmu.2015.00337 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Smith GP, Dabhi VM, Pamer EG, Lindahl KF (1994) Peptide presentation by the MHC class Ib molecule, H2-M3. Int Immunol 6:1917–1926PubMedCrossRefGoogle Scholar
  168. Stroynowski I, Lindahl KF (1994) Antigen presentation by non-classical class I molecules. Curr Opin Immunol 6:38–44PubMedCrossRefGoogle Scholar
  169. Stroynowski I, Soloski M, Low MG, Hood L (1987) A single gene encodes soluble and membrane-bound forms of the major histocompatibility Qa-2 antigen: anchoring of the product by a phospholipid tail. Cell 50:759–768PubMedCrossRefGoogle Scholar
  170. Sullivan BA, Kraj P, Weber DA, Ignatowicz L, Jensen PE (2002) Positive selection of a Qa-1-restricted T cell receptor with specificity for insulin. Immunity 17:95–105PubMedCrossRefGoogle Scholar
  171. Swanson PA 2nd, Pack CD, Hadley A, Wang CR, Stroynowski I, Jensen PE, Lukacher AE (2008) An MHC class Ib-restricted CD8 T cell response confers antiviral immunity. J Exp Med 205:1647–1657. doi: 10.1084/jem.20080570 PubMedPubMedCentralCrossRefGoogle Scholar
  172. Tabaczewski P, Chiang E, Henson M, Stroynowski I (1997) Alternative peptide binding motifs of Qa-2 class Ib molecules define rules for binding of self and nonself peptides. J Immunol (Baltimore, Md : 1950) 159:2771–2781Google Scholar
  173. Tabaczewski P, Shirwan H, Lewis K, Stroynowski I (1994) Alternative splicing of class Ib major histocompatibility complex transcripts in vivo leads to the expression of soluble Qa-2 molecules in murine blood. Proc Natl Acad Sci U S A 91:1883–1887PubMedPubMedCentralCrossRefGoogle Scholar
  174. Tabaczewski P, Stroynowski I (1994) Expression of secreted and glycosylphosphatidylinositol-bound Qa-2 molecules is dependent on functional TAP-2 peptide transporter. J Immunol (Baltimore, Md : 1950) 152:5268–5274Google Scholar
  175. Tatituri RV et al. (2013) Recognition of microbial and mammalian phospholipid antigens by NKT cells with diverse TCRs. Proc Natl Acad Sci U S A 110:1827–1832. doi: 10.1073/pnas.1220601110 PubMedPubMedCentralCrossRefGoogle Scholar
  176. Teitell M, Holcombe H, Cheroutre H, Aldrich CJ, Stroynowski I, Forman J, Kronenberg M (1993) The alpha 3 domain of the Qa-2 molecule is defective for CD8 binding and cytotoxic T lymphocyte activation. J Exp Med 178:2139–2145PubMedCrossRefGoogle Scholar
  177. Tilloy F et al. (1999) An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J Exp Med 189:1907–1921PubMedPubMedCentralCrossRefGoogle Scholar
  178. Tomasec P et al. (2000) Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287:1031PubMedCrossRefGoogle Scholar
  179. Treiner E (2015) Mucosal-associated invariant T cells in inflammatory bowel diseases: bystanders, defenders, or offenders? Front Immunol 6:27. doi: 10.3389/fimmu.2015.00027 PubMedPubMedCentralGoogle Scholar
  180. Treiner E et al. (2003) Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422:164–169. doi: 10.1038/nature01433 PubMedCrossRefGoogle Scholar
  181. Treiner E, Liblau RS (2015) Mucosal-associated invariant T cells in multiple sclerosis: the jury is still out. Front Immunol 6:503. doi: 10.3389/fimmu.2015.00503 PubMedPubMedCentralGoogle Scholar
  182. Tsujimura K, Obata Y, Iwase S, Matsudaira Y, Ozeki S, Takahashi T (2000) The epitope detected by cytotoxic T lymphocytes against thymus leukemia (TL) antigen is TAP independent. Int Immunol 12:1217–1225PubMedCrossRefGoogle Scholar
  183. Tsujimura K et al. (2003) Thymus leukemia antigen (TL)-specific cytotoxic T lymphocytes recognize the alpha1/alpha2 domain of TL free from antigenic peptides. Int Immunol 15:1319–1326PubMedCrossRefGoogle Scholar
  184. Tsujimura K, Obata Y, Matsudaira Y, Ozeki S, Yoshikawa K, Saga S, Takahashi T (2001) The binding of thymus leukemia (TL) antigen tetramers to normal intestinal intraepithelial lymphocytes and thymocytes. J Immunol (Baltimore, Md : 1950) 167:759–764CrossRefGoogle Scholar
  185. Tsujimura K, Takahashi T, Morita A, Hasegawa-Nishiwaki H, Iwase S, Obata Y (1996) Positive selection of gamma delta CTL by TL antigen expressed in the thymus. J Exp Med 184:2175–2184PubMedPubMedCentralCrossRefGoogle Scholar
  186. Tupin E et al. (2008) NKT cells prevent chronic joint inflammation after infection with Borrelia burgdorferi. Proc Natl Acad Sci U S A 105:19863–19868. doi: 10.1073/pnas.0810519105 PubMedPubMedCentralCrossRefGoogle Scholar
  187. Tvinnereim A, Wizel B (2007) CD8+ T cell protective immunity against Chlamydia pneumoniae includes an H2-M3-restricted response that is largely CD4+ T cell-independent. J Immunol (Baltimore, MD : 1950) 179:3947–3957CrossRefGoogle Scholar
  188. Tyznik AJ, Verma S, Wang Q, Kronenberg M, Benedict CA (2014) Distinct requirements for activation of NKT and NK cells during viral infection. J Immunol (Baltimore, MD : 1950) 192:3676–3685. doi: 10.4049/jimmunol.1300837 CrossRefGoogle Scholar
  189. Ugrinovic S, Brooks CG, Robson J, Blacklaws BA, Hormaeche CE, Robinson JH (2005) H2-M3 major histocompatibility complex class Ib-restricted CD8 T cells induced by Salmonella enterica serovar Typhimurium infection recognize proteins released by Salmonella serovar. Typhimurium Infect Immun 73:8002–8008. doi: 10.1128/IAI.73.12.8002-8008.2005 PubMedCrossRefGoogle Scholar
  190. Ulbrecht M, Martinozzi S, Grzeschik M, Hengel H, Ellwart JW, Pla M, Weiss EH (2000) Cutting edge: the human cytomegalovirus UL40 gene product contains a ligand for HLA-E and prevents NK cell-mediated lysis. J Immunol (Baltimore, MD : 1950) 164:5019–5022CrossRefGoogle Scholar
  191. Ulrichs T, Moody DB, Grant E, Kaufmann SH, Porcelli SA (2003) T-cell responses to CD1-presented lipid antigens in humans with Mycobacterium tuberculosis infection. Infect Immun 71:3076–3087PubMedPubMedCentralCrossRefGoogle Scholar
  192. Urdahl KB, Liggitt D, Bevan MJ (2003) CD8+ T cells accumulate in the lungs of Mycobacterium tuberculosis-infected kb−/−Db−/− mice, but provide minimal protection. J Immunol (Baltimore, MD : 1950) 170:1987–1994CrossRefGoogle Scholar
  193. Urdahl KB, Sun JC, Bevan MJ (2002) Positive selection of MHC class Ib-restricted CD8(+) T cells on hematopoietic cells. Nat Immunol 3:772–779. doi: 10.1038/ni814 PubMedPubMedCentralGoogle Scholar
  194. Ussher JE et al. (2014) CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12 + IL-18 in a TCR-independent manner. Eur J Immunol 44:195–203. doi: 10.1002/eji.201343509 PubMedCrossRefGoogle Scholar
  195. van Meijgaarden KE, Haks MC, Caccamo N, Dieli F, Ottenhoff TH, Joosten SA (2015) Human CD8+ T-cells recognizing peptides from Mycobacterium tuberculosis (Mtb) presented by HLA-E have an unorthodox Th2-like, multifunctional, Mtb inhibitory phenotype and represent a novel human T-cell subset. PLoS Pathog 11:e1004671. doi: 10.1371/journal.ppat.1004671 PubMedPubMedCentralCrossRefGoogle Scholar
  196. Van Rhijn I et al. (2013) A conserved human T cell population targets mycobacterial antigens presented by CD1b. Nat Immunol 14:706–713. doi: 10.1038/ni.2630 PubMedPubMedCentralCrossRefGoogle Scholar
  197. Vance RE, Jamieson AM, Raulet DH (1999) Recognition of the class Ib molecule Qa-1(b) by putative activating receptors CD94/NKG2C and CD94/NKG2E on mouse natural killer cells. J Exp Med 190:1801–1812PubMedPubMedCentralCrossRefGoogle Scholar
  198. Vance RE, Kraft JR, Altman JD, Jensen PE, Raulet DH (1998) Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b). J Exp Med 188:1841–1848PubMedPubMedCentralCrossRefGoogle Scholar
  199. Wang CR, Castano AR, Peterson PA, Slaughter C, Lindahl KF, Deisenhofer J (1995) Nonclassical binding of formylated peptide in crystal structure of the MHC class Ib molecule H2-M3. Cell 82:655–664PubMedCrossRefGoogle Scholar
  200. Wang CR, Loveland BE, Lindahl KF (1991) H-2 M3 encodes the MHC class I molecule presenting the maternally transmitted antigen of the mouse. Cell 66:335–345PubMedCrossRefGoogle Scholar
  201. Wang EC et al. (2002) UL40-mediated NK evasion during productive infection with human cytomegalovirus. Proc Natl Acad Sci U S A 99:7570–7575. doi: 10.1073/pnas.112680099 PubMedPubMedCentralCrossRefGoogle Scholar
  202. Warner CM, Gollnick SO, Flaherty L, Goldbard SB (1987) Analysis of Qa-2 antigen expression by preimplantation mouse embryos: possible relationship to the preimplantation-embryo-development (Ped) gene product. Biol Reprod 36:611–616PubMedCrossRefGoogle Scholar
  203. Weber DA et al. (2002) Peptide-independent folding and CD8 alpha alpha binding by the nonclassical class I molecule, thymic leukemia antigen. J Immunol (Baltimore, Md : 1950) 169:5708–5714CrossRefGoogle Scholar
  204. Wesley JD, Tessmer MS, Chaukos D, Brossay L (2008) NK cell-like behavior of Valpha14i NK T cells during MCMV infection. PLoS Pathog 4:e1000106. doi: 10.1371/journal.ppat.1000106 PubMedPubMedCentralCrossRefGoogle Scholar
  205. Wieland Brown LC et al. (2013) Production of alpha-galactosylceramide by a prominent member of the human gut microbiota. PLoS Biol 11:e1001610. doi: 10.1371/journal.pbio.1001610 PubMedPubMedCentralCrossRefGoogle Scholar
  206. Williams MA, Bevan MJ (2005) Cutting edge: a single MHC class Ia is sufficient for CD8 memory T cell differentiation. J Immunol (Baltimore, MD : 1950) 175:2066–2069CrossRefGoogle Scholar
  207. Wu M, van Kaer L, Itohara S, Tonegawa S (1991) Highly restricted expression of the thymus leukemia antigens on intestinal epithelial cells. J Exp Med 174:213–218PubMedCrossRefGoogle Scholar
  208. Xu H, Chun T, Choi HJ, Wang B, Wang CR (2006) Impaired response to Listeria in H2-M3-deficient mice reveals a nonredundant role of MHC class Ib-specific T cells in host defense. J Exp Med 203:449–459. doi: 10.1084/jem.20051866 PubMedPubMedCentralCrossRefGoogle Scholar
  209. Yeager M, Kumar S, Hughes AL (1997) Sequence convergence in the peptide-binding region of primate and rodent MHC class Ib molecules. Mol Biol Evol 14:1035–1041PubMedCrossRefGoogle Scholar
  210. Yokoyama K, Stockert E, Old LJ, Nathenson SG (1982) Structural evidence that the small subunit found associated with the TL antigen is beta 2-microglobulin. Immunogenetics 15:543–549PubMedGoogle Scholar
  211. Zajonc DM et al. (2005) Molecular mechanism of lipopeptide presentation by CD1a. Immunity 22:209–219. doi: 10.1016/j.immuni.2004.12.009 PubMedCrossRefGoogle Scholar
  212. Zeng L et al. (2012) A structural basis for antigen presentation by the MHC class Ib molecule, Qa-1b. J Immunol (Baltimore, Md : 1950) 188:302–310. doi: 10.4049/jimmunol.1102379 CrossRefGoogle Scholar
  213. Zhao J, Siddiqui S, Shang S, Bian Y, Bagchi S, He Y, Wang CR (2015) Mycolic acid-specific T cells protect against Mycobacterium tuberculosis infection in a humanized transgenic mouse model. Elife 4 doi:10.7554/eLife.08525Google Scholar
  214. Zhou XY et al. (1998) HFE gene knockout produces mouse model of hereditary hemochromatosis. Proc Natl Acad Sci U S A 95:2492–2497PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Molecular Microbiology and Immunology, Division of Biology and MedicineBrown UniversityProvidenceUSA

Personalised recommendations