, Volume 68, Issue 5, pp 353–364 | Cite as

Positive selection in the SLC11A1 gene in the family Equidae

  • Zuzana Bayerova
  • Eva Janova
  • Jan Matiasovic
  • Ludovic Orlando
  • Petr HorinEmail author
Original Article


Immunity-related genes are a suitable model for studying effects of selection at the genomic level. Some of them are highly conserved due to functional constraints and purifying selection, while others are variable and change quickly to cope with the variation of pathogens. The SLC11A1 gene encodes a transporter protein mediating antimicrobial activity of macrophages. Little is known about the patterns of selection shaping this gene during evolution. Although it is a typical evolutionarily conserved gene, functionally important polymorphisms associated with various diseases were identified in humans and other species. We analyzed the genomic organization, genetic variation, and evolution of the SLC11A1 gene in the family Equidae to identify patterns of selection within this important gene. Nucleotide SLC11A1 sequences were shown to be highly conserved in ten equid species, with more than 97 % sequence identity across the family. Single nucleotide polymorphisms (SNPs) were found in the coding and noncoding regions of the gene. Seven codon sites were identified to be under strong purifying selection. Codons located in three regions, including the glycosylated extracellular loop, were shown to be under diversifying selection. A 3-bp indel resulting in a deletion of the amino acid 321 in the predicted protein was observed in all horses, while it has been maintained in all other equid species. This codon comprised in an N-glycosylation site was found to be under positive selection. Interspecific variation in the presence of predicted N-glycosylation sites was observed.


SLC11A1 gene Polymorphism Equidae 



This study was supported by the Czech National Science Foundation project GACR 523/09/1972 and by the project “CEITEC – Central European Institute of Technology” (CZ.1.05/1.100/02.0068) from European Regional Development Fund. The authors would like to thank Petra Videnska for her assistance with the next-generation sequence analyses.

Supplementary material

251_2016_905_MOESM1_ESM.doc (28 kb)
ESM 1 (DOC 28 kb)
251_2016_905_MOESM2_ESM.doc (64 kb)
ESM 2 (DOC 64 kb)
251_2016_905_MOESM3_ESM.pdf (1.5 mb)
ESM 3 (PDF 1576 kb)
251_2016_905_MOESM4_ESM.pdf (303 kb)
ESM 4 (PDF 302 kb)
251_2016_905_MOESM5_ESM.doc (38 kb)
ESM 5 (DOC 38 kb)
251_2016_905_MOESM6_ESM.xlsx (24 kb)
ESM 6 (XLSX 23 kb)
251_2016_905_MOESM7_ESM.pdf (89 kb)
ESM 7 (PDF 89 kb)
251_2016_905_MOESM8_ESM.xlsx (39 kb)
ESM 8 (XLSX 38 kb)
251_2016_905_MOESM9_ESM.pdf (291 kb)
ESM 9 (PDF 290 kb)
251_2016_905_MOESM10_ESM.doc (50 kb)
ESM 10 (DOC 49 kb)
251_2016_905_MOESM11_ESM.pdf (91 kb)
ESM 11 (PDF 90 kb)
251_2016_905_MOESM12_ESM.doc (28 kb)
ESM 12 (DOC 28 kb)
251_2016_905_MOESM13_ESM.doc (40 kb)
ESM 13 (DOC 39 kb)
251_2016_905_MOESM14_ESM.doc (34 kb)
ESM 14 (DOC 33 kb)
251_2016_905_MOESM15_ESM.doc (26 kb)
ESM 15 (DOC 26 kb)
251_2016_905_MOESM16_ESM.doc (144 kb)
ESM 16 (DOC 144 kb)
251_2016_905_MOESM17_ESM.doc (26 kb)
ESM 17 (DOC 26 kb)
251_2016_905_MOESM18_ESM.doc (84 kb)
ESM 18 (DOC 83 kb)
251_2016_905_MOESM19_ESM.doc (49 kb)
ESM 19 (DOC 49 kb)
251_2016_905_MOESM20_ESM.doc (32 kb)
ESM 20 (DOC 32 kb)


  1. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ates O, Kurt S, Bozkurt N, Karaer H (2010) NRAMP1 (SLC11A1) variants: genetic susceptibility to multiple sclerosis. J Clin Immunol 30:583CrossRefPubMedGoogle Scholar
  3. Barnes I, Duda A, Pybus OG, Thomas MG (2010) Ancient urbanization predicts genetic resistance to tuberculosis. Evolution 65(3):842CrossRefPubMedGoogle Scholar
  4. Barton CH, Biggs TE, Baker ST, Bowen H, Atkinson PGP (1999) Nramp1: a link between intracellular iron transport and innate resistance to intracellular pathogens. J Leukoc Biol 66:757PubMedGoogle Scholar
  5. Bayele HK, Peyssonnaux C, Giatromanolaki A, Arrals-Silva WW, Mohamed HS, Collins H et al (2007) HIF-1 regulates heritable variation and allele expression phenotypes of the macrophage immune response gene SLC11A1 from a Z-DNA-forming microsatellite. Blood 110(8):3039CrossRefPubMedGoogle Scholar
  6. Blackwell, J.M. (1989) The macrophage resistance gene Lsh/Ity/Bcg. Research in Immunology, 140, 767. (Convenor, 27th Forum in Immunology).Google Scholar
  7. Blackwell JM, Roberts CW, Roach TIA, Alexander J (1994) Influence of macrophage resistance gene Lsh/Ity/Bcg (candidate Nramp) on Toxoplasma gondii infection in mice. Clin Exp Immunol 97:107CrossRefPubMedPubMedCentralGoogle Scholar
  8. Blackwell JM, Searle S, Goswami T, Miller EN (2000) Understanding the multiple functions of Nramp1. Microbes Infect 2:317CrossRefPubMedGoogle Scholar
  9. Blackwell JM, Goswami T, Evans CAW, Sibthorpe D, Papo N, White JK et al (2001) SLC11A1 (formerly NRAMP1) and disease resistance. Cell Microbiol 3(12):773CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bradley DJ (1977) Gentic control of Leishmania populations within the host II Genetic control of acute susceptibility of mice to L donovani infections. Clin Exp Immunol 30:130PubMedPubMedCentralGoogle Scholar
  11. Cellier MF (2013) Cell-Type Specific Determinants of NRAMP1 Expression in Professional Phagocytes. Biology 2:233CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chapman SJ, Hill A (2012) Human genetic susceptibility to infectious disease. Nat Rev Genet 13(3):175PubMedGoogle Scholar
  13. Dinkel H, Van Roey K, Michael S, Davey NE, Weatheritt RJ, Born D et al (2014) The eukaryotic linear motif resourse ELM: 10 years and counting. Nucleic Acids Res 42(Database issue):D259CrossRefPubMedPubMedCentralGoogle Scholar
  14. Feng DF, Johnson MS, Doolittle RF (1985) Aligning amino acid sequences: comparison of commonly used method. J Mol Evol 21:112CrossRefGoogle Scholar
  15. Forbes JR, Gros P (2001) Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol 9(8):397CrossRefPubMedGoogle Scholar
  16. Forbes JR, Gros P (2003) Iron, manganese, and cobalt transport by Nramp1 (SLC11A1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood 102(5):1884CrossRefPubMedGoogle Scholar
  17. Goswami T, Bhattacharjee A, Babal P, Searle S, Moore E, Li M, Blackwell JM (2001) Natural-resistance-associated macrophage protein 1 is an H+ / bivalent cation antiporter. Biochem J 354(Pt 3):511CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gruenheid S, Gros P (2000) Genetic susceptibility to intracellular infections: Nramp1, macrophage function and divalent cations transport. Curr Opin Microbiol 3(1):43CrossRefPubMedGoogle Scholar
  19. Gupta, R., Jung, E. & Brunak, S. (2004) Prediction of N-glycosytarion sites in human proteins. In preparation. Server available at .
  20. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95Google Scholar
  21. Horin P, Matiasovic J (1999) Evidence for the existence of an NRAMP1 gene in the horse. Archiv für Tierzucht (Dummersdorf) 42:130Google Scholar
  22. Huang J, Zhao Y, Shiraigol W, Li B, Bai D, Ye W et al (2014) Analysis of horse genomes provides insight into the diversification and adaptive evolution of karyotype. Sci Rep 4:4958PubMedPubMedCentralGoogle Scholar
  23. Johnson EE, Wessling-Resnick M (2012) Iron metabolism and the innate immune response to infection. Microbes Infect 14:207CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jónsson H, Schubert M, Sequin-Orlando A, Ginolhac A, Petersen L, Fumagalli M et al (2014) Speciation with gene flow in equids despite extensive chromosomal plasticity. Proc Natl Acad Sci U S A 111(52):18655CrossRefPubMedPubMedCentralGoogle Scholar
  25. Karlsson EK, Kwiatkowski DP, Sabeti PC (2014) Natural selection and infectious disease in human populations. Nat Rev Genet 15(6):379CrossRefPubMedGoogle Scholar
  26. Kim DS, Hahn Y (2015) The acquisition of novel N-glycosylation sites in conserved proteins during human evolution. BMC Bioinf 16:29CrossRefGoogle Scholar
  27. Kosakovsky Pond SL, Frost SDW (2005a) A Genetic Algorithm Approach to Detecting Lineage-Specific Variation in Selection Pressure. Mol Biol Evol 22(3):478CrossRefGoogle Scholar
  28. Kosakovsky Pond, S.L. & Frost, S.D.W. (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics, doi:  10.1093/bioinformatics/bti320
  29. Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD (2006) GARD: a genetic algorithm for recombination detection. Bioinformatics 22(24):3096CrossRefPubMedGoogle Scholar
  30. Kosakovsky Pond SL, Murrell B, Fourment M, Frost SDW, Delport W, Scheffler K (2008) A random effects branch-site model for detecting episodic diversifying selection. Mol Biol Evol 24(1):1Google Scholar
  31. Lemos de Matos A, McFadden G, Esteves PD (2013) Evolution of viral sensing RIG-I-like receptor genes in Leporidae genera Orytolagus, Sylvilagus, and Lepus. Immunogenetics 66:43CrossRefPubMedGoogle Scholar
  32. Li X, Yang Y, Zhou F, Zhang Y, Lu H, Jin Q, Gao L (2011) SLC11A1 (NRAMP1) polymorphisms and tuberculosis susceptibility: updated systematic review and metaanalysis. PLoS One 6(1):e15831CrossRefPubMedPubMedCentralGoogle Scholar
  33. Matiašovic J, Kubíčková S, Musilová P, Rubeš J, Hořín P (2002) Characterization of the NRAMP1 (SLC11A1) gene in the horse (Equus caballus L.). Eur J Immunogenet 29:423CrossRefPubMedGoogle Scholar
  34. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F (2010) Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 26(16):2069CrossRefPubMedPubMedCentralGoogle Scholar
  35. Montalbetti N, Simonin A, Kovacs G, Hediger MA (2013) Mammalian iron transporters: families SLC11 and SLC40. Mol Asp Med 34:270–287CrossRefGoogle Scholar
  36. Nergadze SG, Lupotto M, Pellanda P, Santagostino M, Vitelli V, Giulotto E (2010) Mitochondrial DNA insertion in the nuclear horse genome. Anim Genet 41(2):176CrossRefPubMedGoogle Scholar
  37. Neves JV, Wilson JM, Kuhl H, Reinhardt R, Castro LF, Rodrigues PN (2011) Natural history of SLC11 genes in vertebrates: tales from the fish world. BMC Evol Biol 11:106PubMedPubMedCentralGoogle Scholar
  38. Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A, Stiller M et al (2013) Rechalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499(7456):74CrossRefPubMedGoogle Scholar
  39. Ortutay C, Vihinen M (2012) Conserved and quickly evolving immunogenome genes have different evolutionary paths. Hum Mutat 33(10):1456CrossRefPubMedGoogle Scholar
  40. Pinheiro A, Woof JM, Almeida T, Abrantes J, Alves PC, Gortázar C, Esteves PJ (2014) Leporid immunoglobulin G shows evidence of strong selective pressure on the hinge and CH3 domains. Open Biol 4:140088CrossRefPubMedPubMedCentralGoogle Scholar
  41. Plant JE, Glynn A (1976) Genetics of resistance to infection with Salmonella typhimurium in mice. J Infect Dis 133:72CrossRefPubMedGoogle Scholar
  42. Price SA, Bininda-Emonds ORP (2009) A comprehensive phylogeny of extant horses, rhinos and tapirs (Perissodactyla) through data combination. Zoosystematics Evolution 85:277CrossRefGoogle Scholar
  43. Purdie AC, Plain KM, Begg DJ, de Silva K, Whittington RJ (2011) Candidate gene and genome-wide association studies of Mycobacterium avium subsp. paratuberculosis infection in cattle and sheep: a review. Comp Immunol Microbiol Infect Dis 34:197CrossRefPubMedGoogle Scholar
  44. Qanbari S, Strom TM, Haberer G, Weigend S, Gheyas AA, Turner F, Burt DW, Preisinger R, Gianola D, Simianer H (2012) A high resolution genome-wide scan for significant selective sweeps: an application to pooled sequence data in laying chickens. PLoS One 7(11):e49525CrossRefPubMedPubMedCentralGoogle Scholar
  45. Risler JL, Delorme MO, Delacroix H, Henaut A (1988) Amino acid substitutions in structurally related proteins. A pattern recognition approach. Determination of a new and efficient scoring matrix. J Mol Biol 204:1019CrossRefPubMedGoogle Scholar
  46. Rozen, S. & Skaletsky, H.J. (1998) Primer3. Code available at
  47. Salinas-Delgado Y, Galaviz-Hernández C, Toral RG, Ávila Rejón CA, Reyes-Lopez MA, Martínez AR, Martínez-Aguilar G, Sosa-Macías M (2015) The D543N polymorphism of the SLC11A1/NRAMP1 gene is associated with treatment failure in male patients with pulmonary tuberculosis. Drug Metabol Personal Ther 30(3):211CrossRefPubMedGoogle Scholar
  48. Schubert M, Jónsson H, Chang D, Der Sarkissian C, Ermini L, Ginolhac A et al (2014) Prehistoric genomes reveal the genetic foundation and cost of horse domestication. PNAS 111:E5661CrossRefPubMedPubMedCentralGoogle Scholar
  49. Searle S, Blackwell JM (1999) Evidence for a functional repeat polymorphism in the promoter of the human NRAMP1 gene that correlates with autoimmune versus infectious disease susceptibility. J Med Genet 36:295PubMedPubMedCentralGoogle Scholar
  50. Segond D, Dellagi A, Lanquar V, Rigault M, Patrit O, Thomine S, Expert D (2009) NRAMP genes function in Arabidopsis thaliana resistance to Erwinia chrysanthemi infection. Plant J 58:195CrossRefPubMedGoogle Scholar
  51. Skamene E, Gros P, Forget A, Kongshaven PAL, StCharles C, Taylor BA (1982) Genetic regulation of resistance to intracellular pathogens. Nature 297:506CrossRefPubMedGoogle Scholar
  52. Steiner CC, Ryder OA (2011) Molecular phylogeny and evolution of the Perissodactyla. Zool J Linnean Soc 163:1289CrossRefGoogle Scholar
  53. Stienstra Y, van der Werf TS, Oosterom E, Nolte IM, van der Graaf WT, Etuaful S et al (2006) Susceptibility to Buruli ulcer is associated with the SLC11A1 (NRAMP1) D543N polymorhism. Genes Immun 7(3):185CrossRefPubMedGoogle Scholar
  54. Takahashi K, Hasegawa Y, Abe T, Yamamoto T, Nakshima K, Imaizumi K, Shimokata K (2008) SLC11A1 (formerly NRAMP1) polymorphisms associated with multidrug-resistant tuberculosis. Tuberculosis 88:52CrossRefPubMedGoogle Scholar
  55. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725CrossRefPubMedPubMedCentralGoogle Scholar
  56. Taype CA, Castro JC, Accinelli RA, Herrera-Velit P, Shaw MA, Espinoza JR (2006) Association between SLC11A1 polymorphisms and susceptibility to different clinical forms of tuberculosis in the Peruvian population. Infect Genet Evol 6:361CrossRefPubMedGoogle Scholar
  57. Techau ME, Valdez-Taubas J, Popoff JF, Francis R, Seaman M, Blackwell JM (2007) Evolution of differences in transport function in Slc11a family members. J Biol Chem 282(49):35646CrossRefPubMedGoogle Scholar
  58. Trifonov VA, Musilova P, Kulemsina AI (2012) Chromosome evolution in Perissodactyla. Cytogenet Genome Res 137:208CrossRefPubMedGoogle Scholar
  59. Vidal S, Tremblay ML, Govoni G, Gauthier S, Sebastiani G, Malo D, Skamene E, Olivier M, Jothy S, Gros P (1995) The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med 182:655CrossRefPubMedGoogle Scholar
  60. Vilstrup JT, Seguin-Orlando A, Stiller M, Ginolhac A, Raghavan M, Nielsen SC et al (2013) Mitochondrial phylogenomics of modern and ancient equids. PLoS One 8(2):e55950CrossRefPubMedPubMedCentralGoogle Scholar
  61. Williams R, Ma X, Schott RK, Mohammad N, Ho CY, Li CF, Chang BSW, Demetriou M, Dennis JW (2014) Encoding asymmetry of the N-glycosylation motif facilitates glycoprotein evolution. PLoS ONE 9(1):e86088CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wlasiuk G, Nachman MW (2010) Adaptation and constraint at toll-like receptors in primates. Mol Biol Evol 27(9):2172CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Zuzana Bayerova
    • 1
  • Eva Janova
    • 1
  • Jan Matiasovic
    • 2
  • Ludovic Orlando
    • 3
  • Petr Horin
    • 1
    Email author
  1. 1.Department of Animal Genetics, Research Group Immunogenomics, Ceitec VFUUniversity of Veterinary and Pharmaceutical SciencesBrnoCzech Republic
  2. 2.Department of ImmunologyVeterinary Research InstituteBrnoCzech Republic
  3. 3.Centre for GeoGenetics, Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations