Immunogenetics

, Volume 67, Issue 8, pp 463–472 | Cite as

Characterization of a non-classical MHC class II gene in the vulnerable Chinese egret (Egretta eulophotes)

Original Paper

Abstract

Genes of the major histocompatibility complex (MHC) are valuable makers of adaptive genetic variation in evolutionary ecology research, yet the non-classical MHC genes remain largely unstudied in wild vertebrates. In this study, we have characterized the non-classical MHC class II gene, Egeu-DAB4, in the vulnerable Chinese egret (Ciconiiformes, Ardeidae, Egretta eulophotes). Gene expression analyses showed that Egeu-DAB4 gene had a restricted tissue expression pattern, being expressed in seven examined tissues including the liver, heart, kidney, esophagus, stomach, gallbladder, and intestine, but not in muscle. With respect to polymorphism, only one allele of exon 2 was obtained from Egeu-DAB4 using asymmetric PCR, indicating that Egeu-DAB4 is genetically monomorphic in exon 2. Comparative analyses showed that Egeu-DAB4 had an unusual sequence, with amino acid differences suggesting that its function may differ from those of classical MHC genes. Egeu-DAB4 gene was only found in 30.56–36.56 % of examined Chinese egret individuals. Phylogenetic analysis showed a closer relationship between Egeu-DAB4 and the DAB2 genes in nine other ardeid species. These new findings provide a foundation for further studies to clarify the immunogenetics of non-classical MHC class II gene in the vulnerable Chinese egret and other ciconiiform birds.

Keywords

MHC Non-classical Class IIb Chinese egret Ardeidae 

Notes

Acknowledgments

We thank Professor Frederic A. Troy II of the University of California (Davis) School of Medicine, for help in reviewing the manuscript. We also thank Yufei Dai who helped collect some samples for this study. This work was funded by the National Natural Science Foundation of China (Grant Nos. 41476113, 31000963, and 31272333) and by the Fujian Natural Science Foundation of China (2010Y2007).

Ethical approval

All procedures involving collection of animal tissue in the wild were approved by the Administration Center for Wildlife Conservation in Fujian Province (FJWCA-1208) and were in accordance with its ethical standards.

Conflict of interest

We declare that we have no conflict of interests.

Supplementary material

251_2015_846_MOESM1_ESM.doc (138 kb)
Table S1 Genotyping data collected from the four Egeu-DAB genes in the Chinese egret (DOC 138 kb)

References

  1. Aguilar A, Edwards SV, Smith TB, Wayne RK (2006) Patterns of variation in MHC class II β loci of the Little Greenbul (Andropadus virens) with comments on MHC evolution in birds. J Hered 97:133–142. doi: 10.1093/jhered/esj013 PubMedCrossRefGoogle Scholar
  2. Alcaide M, Edwards SV, Negro JJ (2007) Characterization, polymorphism, and evolution of MHC class II B genes in birds of prey. J Mol Evol 65:541–554. doi: 10.1007/s00239-007-9033-9 PubMedCrossRefGoogle Scholar
  3. Alcaide M, Edwards SV, Negro JJ, Serrano D, Tella JL (2008) Extensive polymorphism and geographical variation at a positively selected MHC class II B gene of the lesser kestrel (Falco naumanni). Mol Ecol 17:2652–2665. doi: 10.1111/j.1365-294X.2008.03791.x PubMedCrossRefGoogle Scholar
  4. Alcaide M, Muńoz J, Martínez-de la Puente J, Soriguer R, Figuerola J (2014) Extraordinary MHC class II B diversity in a non-passerine wild bird: the Eurasian Coot Fulica atra (Aves: Rallidae). Ecol Evol 4:688–698. doi: 10.1002/ece3.974 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Alfonso C, Karlsson L (2000) Non-classical MHC class II molecules. Annu Rev Immunol 18:113–142. doi: 10.1146/annurev.immunol.18.1.113 PubMedCrossRefGoogle Scholar
  6. Bevan MJ (1987) Class discrimination in the world of immunology. Nature 325:192–194. doi: 10.1038/325192b0 PubMedCrossRefGoogle Scholar
  7. BirdLife International (2015) Species factsheet: Egretta eulophotes. Available via DIALOG. http://www.birdlife.org. Accessed 27 Jan 2015
  8. Bollmer JL, Dunn PO, Whittingham LA, Wimpee C (2010) Extensive MHC class II B gene duplication in a passerine, the common Yellowthroat (Geothlypis trichas). J Hered 101:448–460. doi: 10.1093/jhered/esq018 PubMedCrossRefGoogle Scholar
  9. Bollmer JL, Hull JM, Ernest HB, Sarasola JH, Parker PG (2011) Reduced MHC and neutral variation in the Galopagos hawk, an island endemic. BMC Evol Biol 11:143. doi: 10.1186/1471-2148-11-143 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39. doi: 10.1038/364033a0 PubMedCrossRefGoogle Scholar
  11. Budowle B, Chakraborty R, Giusti AM, Eisenberg AJ, Allen RC (1991) Analysis of the VNTR locus D1S80 by the PCR followed by high resolution PAGE. Am J Hum Genet 48:137–144PubMedCentralPubMedGoogle Scholar
  12. Burri R, Niculita-Hirzel H, Roulin A, Fumagalli L (2008) Isolation and characterization of major histocompatibility complex (MHC) class II B genes in the Barn owl (Aves: Tyto alba). Immunogenetics 60:543–550. doi: 10.1007/s00251-008-0308-0 PubMedCrossRefGoogle Scholar
  13. Carrington M, Yeager M, Mann D (1993) Characterization of HLA DMB polymorphism. Immunogenetics 38:446–449. doi: 10.1007/BF00184526 PubMedCrossRefGoogle Scholar
  14. Cheng YY, Belov K (2014) Characterisation of non-classical MHC class I genes in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 66:727–735. doi: 10.1007/s00251-014-0804-3 PubMedCrossRefGoogle Scholar
  15. Csűrös M, Miklós I (2009) Streamlining and large ancestral genomes in Archaea inferred with a phylogenetic birth-and-death model. Mol Biol Evol 26:2087–2095. doi: 10.1093/molbev/msp123 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Edwards SV, Grahn M, Potts WK (1995) Dynamics of MHC evolution in birds and crocodilians: amplification of class II genes with degenerate primers. Mol Ecol 4:719–729. doi: 10.1111/j.1365-294X.1995.tb00272.x PubMedCrossRefGoogle Scholar
  17. Ekblom R, Saether SA, Fiske P, Kålås JA, Höglund J (2010) Balancing selection, sexual selection and geographic structure in MHC genes of Great Snipe. Genetica 138:453–461. doi: 10.1111/j.1365-294X.2007.03281.x PubMedCrossRefGoogle Scholar
  18. Fang W, Lin Q, Chen X, Lin J (2011) Nestling diet of the vulnerable Chinese egret on offshore islands in southern China. Waterbirds 34:246–251. doi: 10.1675/063.034.0215 CrossRefGoogle Scholar
  19. Frank SA (2002) Immunology and evolution of infectious disease. Princeton University Press, OxfordGoogle Scholar
  20. Germain RN, Castellino F, Han R, Sousa CRE, Romagnoli P, Sadegh-Nasseri S, Zhong G (1996) Processing and presentation of endocytically acquired protein antigens by MHC class II and class I molecules. Immunol Rev 151:5–30. doi: 10.1111/j.1600-065X.1996.tb00701.x CrossRefGoogle Scholar
  21. Glaberman S, Du Pasquier L, Caccone A (2008) Characterization of a nonclassical class I MHC gene in a reptile, the Galápagos marine iguana (Amblyrhynchus cristatus). PLoS ONE 3:e2859. doi: 10.1371/journal.pone.0002859 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  23. Harstad H, Lukacs MF, Bakke HG, Grimholt U (2008) Multiple expressed MHC class II loci in salmonids; details of one non-classical region in Atlantic salmon (Salmo salar). BMC Genomics 9:193. doi: 10.1186/1471-2164-9-193 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Hughes AL (1999) Adaptive evolution of genes and genomes. Oxford University Press, New YorkGoogle Scholar
  25. Hughes AL, Nei M (1989) Evolution of the major histocompatibility complex: independent origin of nonclassical class I genes in different groups of mammals. Mol Biol Evol 6:559–579PubMedGoogle Scholar
  26. Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32:415–435. doi: 10.1146/annurev.genet.32.1.415 PubMedCrossRefGoogle Scholar
  27. IUCN (2015) IUCN Red list of threatened species. Available via DIALOG. http://www.iucnredlist.org. Accessed 27 Jan 2015
  28. Kim AR, Sadegh-Nasseri S (2015) Determinants of immunodominance for CD4 T cells. Curr Opin Immunol 34:9–15. doi: 10.1016/j.coi.2014.12.005 PubMedCrossRefGoogle Scholar
  29. Klareskog L, Sandgerg-Tragardh L, Rask L, Lindblom JB, Curman B, Peterson PA (1977) Chemical properties of human Ia antigens. Nature 265:248–251. doi: 10.1038/265248a0 PubMedCrossRefGoogle Scholar
  30. Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New YorkGoogle Scholar
  31. Klein J (1987) Origin of major histocompatibility complex polymorphism: the trans-species hypothesis. Hum Immunol 19:155–162Google Scholar
  32. Klein J, Figueroa F (1986) Evolution of the major histocompatibility complex. Crit Rev Immunol 6:295–386PubMedGoogle Scholar
  33. Klein J, Horejsi V (1997) Immunology. Blackwell Science, OxfordGoogle Scholar
  34. Klein J, Bontrop RE, Dawkins RL, Erlich HA, Gyllensten UB, Heise ER, Jones PP, Wakeland EK, Watkins DI (1990) Nomenclature for major histocompatibility complexes of different species: a proposal. Immunogenetics 31:217–219. doi: 10.1007/978-3-642-77506-2_32 PubMedGoogle Scholar
  35. Klein J, Satta Y, O’hUigin C, Takahata N (1993) The molecular descent of the major histocompatibility complex. Annu Rev Immunol 11:269–295. doi: 10.1146/annurev.iy.11.040193.001413 PubMedCrossRefGoogle Scholar
  36. Kropshofer H, Vogt AB, Moldenhauer G, Hammer J, Blum JS, Hämmerling GJ (1996) Editing of the HLA-DR peptide repertoire by HLA-DM. EMBO J 15:6144–6154PubMedCentralPubMedGoogle Scholar
  37. Kropshofer H, Hämmerling GJ, Vogt AB (1999) The impact of the nonclassical MHC proteins HLA-DM and HLA-DO on loading of MHC class II molecules. Immunol Rev 172:267–278. doi: 10.1111/j.1600-065X.1999.tb01371.x PubMedCrossRefGoogle Scholar
  38. Lanfear R, Calcott B, Ho SY, Guindon S (2012) Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701. doi: 10.1093/molbev/mss020 PubMedCrossRefGoogle Scholar
  39. Li C, Chen L, Sun Y, Liang H, Yi K, Sun Y, Ma Y, Li X, Wu W, Zhou X (2011a) Molecular cloning, polymorphism and tissue distribution of the MHC class II B gene in the Chinese goose (Anser cygnoides). Br Poultry Sci 52:318–327. doi: 10.1080/00071668.2011.581270 CrossRefGoogle Scholar
  40. Li L, Zhou X, Chen X (2011b) Characterization and evolution of MHC class II B genes in ardeid birds. J Mol Evol 72:474–483. doi: 10.1007/s00239-011-9446-3 PubMedCrossRefGoogle Scholar
  41. Ling F, Wei LQ, Wang T, Wang HB, Zhuo M, Du HL, Wang JF, Wang XN (2011) Characterization of the major histocompatibility complex class II DOB, DPB1, and DQB1 alleles in cynomolgus macaques of Vietnamese origin. Immunogenetics 63:155–166. doi: 10.1007/s00251-010-0498-0 PubMedCrossRefGoogle Scholar
  42. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method. Methods 25:402–408. doi: 10.1006/meth2001.1262 PubMedCrossRefGoogle Scholar
  43. Luís C, Cothran EG, Oom MM, Bailey E (2005) Major histocompatibility complex locus DRA polymorphism in the endangered Sorraia horse and related breeds. J Anim Breed Genet 122:69–72. doi: 10.1111/j.1439-0388.2004.00485.x PubMedCrossRefGoogle Scholar
  44. Marsh SGE, Parham P, Barber LD (2000) The HLA facts book. Academic Press, LondonGoogle Scholar
  45. Miller HC, Lambert DM (2004) Gene duplication and gene conversion in class II MHC genes in New Zealand robins (Petroicidae). Immunogenetics 56:178–191. doi: 10.1007/s00251-004-0666-1 PubMedGoogle Scholar
  46. Naruse TK, Kawata H, Inoko H, Isshiki G, Yamano K, Hino M, Tatsumi N (2002) The HLA-DOB gene displays limited polymorphism with only one amino acid substitution. Tissue Antigens 59:512–519. doi: 10.1034/j.1399-0039.2002.590608.x PubMedCrossRefGoogle Scholar
  47. Neefjes J, Jongsma ML, Paul P, Bakke O (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11:823–836. doi: 10.1038/nri3084 PubMedGoogle Scholar
  48. Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152. doi: 10.1146/annurev.genet.39.073003.112240 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci U S A 94:7799–7806. doi: 10.1073/pnas.94.15.7799 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Ohta T (1998) On the pattern of polymorphisms at major histocompatibility complex loci. J Mol Evol 46:633–638. doi: 10.1007/PL00006343 PubMedCrossRefGoogle Scholar
  51. Promerová M, Králová T, Bryjová A, Albrecht T, Bryja J (2013) MHC class II B exon 2 polymorphism in the grey partridge (Perdix perdix) is shaped by selection, recombination and gene conversion. PLoS ONE 8:e69135. doi: 10.1371/journal.pone.0069135 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Sato A, Mayer WE, Tichy H, Grant PR, Grant BR, Klein J (2001) Evolution of Mhc class II B genes in Darwin’s finches and their closest relatives: birth of a new gene. Immunogenetics 53:792–801. doi: 10.1007/s00251-001-0393-9 PubMedCrossRefGoogle Scholar
  53. Servenius B, Rask L, Peterson PA (1987) Class II genes of the human major histocompatibility complex. The DO beta gene is a divergent member of the class II beta gene family. J Biol Chem 262:8759–8766PubMedGoogle Scholar
  54. Silva MC, Edwards SV (2009) Structure and evolution of a new avian MHC class II B gene in a sub-Antarctic seabird, the thin-billed prion (Procellariiformes: Pachyptila belcheri). J Mol Evol 68:279–291. doi: 10.1007/s00239-009-9200-2 PubMedCrossRefGoogle Scholar
  55. Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16. doi: 10.1186/1742-9994-2-16 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Strandh M, Lannefors M, Bonadonna F, Westerdahl H (2011) Characterization of MHC class I and II genes in a subantarctic seabird, the blue petrel, Halobaena caerulea (Procellariiformes). Immunogenetics 63:653–666. doi: 10.1007/s00251-011-0534-8 PubMedCrossRefGoogle Scholar
  57. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA 6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Taniguchi Y, Matsumoto K, Matsuda H, Yamada T, Sugiyama T, Homma K, Kaneko Y, Yamagishi S, Iwaisaki H (2014) Structure and polymorphism of the major histocompatibility complex class II region in the Japanese crested ibis (Nipponia nippon). PLoS ONE 9:e108506. doi: 10.1371/journal.pone.0108506 PubMedCentralPubMedCrossRefGoogle Scholar
  59. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi: 10.1093/nar/22.22.4673 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Wang JH, Reinherz EL (2002) Structural basis of T cell recognition of peptides bound to MHC molecules. Mol Immunol 38:1039–1049. doi: 10.1016/S0161-5890(02)00033-0 PubMedCrossRefGoogle Scholar
  61. Wang C, Perera TV, Ford HL, Dascher CC (2003) Characterization of a divergent non-classical MHC class I gene in sharks. Immunogenetics 55:57–61. doi: 10.1007/s00251-003-0542-4 PubMedCrossRefGoogle Scholar
  62. Wang Z, Zhou X, Lin Q, Fang W, Chen X (2011) New primers for sex identification in the Chinese egret and other ardeid species. Mol Ecol Resour 11:176–179. doi: 10.1111/j.1755-0998.2010.02879.x PubMedCrossRefGoogle Scholar
  63. Wang Z, Zhou X, Lin Q, Fang W, Chen X (2013) Characterization, polymorphism and selection of major histocompatibility complex (MHC) DAB genes in vulnerable Chinese egret (Egretta eulophotes). PLoS ONE 8:e74185. doi: 10.1371/journal.pone.0074185 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Wittzell H, Bernot A, Auffrey C, Zoorob R (1999) Concerted evolution of two Mhc class II B locus in pheasants and domestic chickens. Mol Biol Evol 16:479–490. doi: 10.1093/oxfordjournals.molbev.a026130 PubMedCrossRefGoogle Scholar
  65. Zhou X, Lin Q, Fang W, Chen X (2014) The complete mitochondrial genomes of sixteen ardeid birds revealing the evolutionary process of the gene rearrangements. BMC Genomics 15:573. doi: 10.1186/1471-2164-15-573 PubMedCentralPubMedCrossRefGoogle Scholar
  66. Zoorob R, Bernot A, Renoir DM, Choukri F, Auffray C (1993) Chicken major histocompatibility complex class II B genes: analysis of interallelic and inter-locus sequence variance. Eur J Immunol 23:1139–1145. doi: 10.1002/eji.1830230524 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and EcologyXiamen UniversityXiamenPeople’s Republic of China

Personalised recommendations