Immunogenetics

, Volume 66, Issue 9–10, pp 581–587 | Cite as

High diversity of MIC genes in non-human primates

  • Alice Meyer
  • Raphael Carapito
  • Louise Ott
  • Mirjana Radosavljevic
  • Philippe Georgel
  • Erin J. Adams
  • Peter Parham
  • Ronald E. Bontrop
  • Antoine Blancher
  • Seiamak Bahram
Brief Communication

Abstract

The human MHC class I (MHC-I) chain-related genes A and B (MICA and MICB) encode stress-induced glycoproteins, ligands for the activating receptor NKG2D. They display an unusually high degree of polymorphism, next only to that of classical MHC-I. The functional relevance and selective pressure behind this peculiar polymorphism, which is quite distinct from that of classical MHC-I, remain largely unknown. This study increases the repertoire of allelic sequences determined for the MIC genes of non-human primates. Sequencing (mainly exons 2, 3, 4, 5) MIC genes of 72 Macaca fascicularis (Mafa), 63 Pan troglodytes (Patr), and 18 Gorilla gorilla (Gogo) individuals led to the identification of 35, 14, and 3 new alleles, respectively. Additionally, we confirm the existence of three independent MIC genes in M. fascicularis, i.e., Mafa-MICA, Mafa-MICB, and Mafa-MICB/A, the latter being a hybrid of Mafa-MICB and Mafa-MICA. By multiple sequence alignment and phylogenetic analysis, we further demonstrate that the present day MIC genes most likely derive from a single human MICB-like ancestral gene.

Keywords

MHC class I chain-related genes Gorilla gorilla Pan troglodytes Macaca fascicularis Allelic diversity 

Notes

Acknowledgments

We wish to thank Dr. Alejandro P. Rooney for the primate samples. This work is published under the framework of the LABEX TRANSPLANEX [ANR-11-LABX-0070_TRANSPLANTEX] which benefits from the funding of the French government, funds managed by the French National Research Agency (ANR) as part of the “Investments for the future” program. Additional support was provided by Genomax, the Strasbourg School of Medicine Next Generation Sequencing center, the French Ministry of Research, and the Institut Universitaire de France (IUF).

Supplementary material

251_2014_791_MOESM2_ESM.docx (25 kb)
Supplementary Figure 1 Multiple alignment of exon 5 of human MICB and Mafa-MICBThe human MICA reference sequence (Hu-MICA*001; GenBank accession number X92841) is used as reference. GCT triplets are underlined (DOCX 25.4 kb).

References

  1. Amroun H, Djoudi H, Busson M, Allat R, El Sherbini SM, Sloma I, Ramasawmy R, Brun M, Dulphy N, Krishnamoorthy R, Toubert A, Charron D, Abbadi MC, Tamouza R (2005) Early-onset ankylosing spondylitis is associated with a functional MICA polymorphism. Hum Immunol 66:1057–1061PubMedCrossRefGoogle Scholar
  2. Anzai T, Shiina T, Kimura N, Yanagiya K, Kohara S, Shigenari A, Yamagata T, Kulski JK, Naruse TK, Fujimori Y, Fukuzumi Y, Yamazaki M, Tashiro H, Iwamoto C, Umehara Y, Imanishi T, Meyer A, Ikeo K, Gojobori T, Bahram S, Inoko H (2003) Comparative sequencing of human and chimpanzee MHC class I regions unveils insertions/deletions as the major path to genomic divergence. Proc Natl Acad Sci U S A 100:7708–7713PubMedCentralPubMedCrossRefGoogle Scholar
  3. Averdam A, Seelke S, Grutzner I, Rosner C, Roos C, Westphal N, Stahl-Hennig C, Muppala V, Schrod A, Sauermann U, Dressel R, Walter L (2007) Genotyping and segregation analyses indicate the presence of only two functional MIC genes in rhesus macaques. Immunogenetics 59:247–251PubMedCrossRefGoogle Scholar
  4. Bahram S (2000) MIC genes: from genetics to biology. Adv Immunol 76:1–60PubMedCrossRefGoogle Scholar
  5. Bahram S, Bresnahan M, Geraghty DE, Spies T (1994) A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci U S A 91:6259–6263PubMedCentralPubMedCrossRefGoogle Scholar
  6. de Groot NG, Garcia CA, Verschoor EJ, Doxiadis GG, Marsh SG, Otting N, Bontrop RE (2005) Reduced MIC gene repertoire variation in West African chimpanzees as compared to humans. Mol Biol Evol 22:1375–1385PubMedCrossRefGoogle Scholar
  7. Douik H, Ben Chaaben A, Attia Romdhane N, Romdhane HB, Mamoghli T, Fortier C, Boukouaci W, Harzallah L, Ghanem A, Gritli S, Makni M, Charron D, Krishnamoorthy R, Guemira F, Tamouza R (2009) Association of MICA-129 polymorphism with nasopharyngeal cancer risk in a Tunisian population. Hum Immunol 70:45–48PubMedCrossRefGoogle Scholar
  8. Doxiadis GG, Heijmans CM, Otting N, Bontrop RE (2007) MIC gene polymorphism and haplotype diversity in rhesus macaques. Tissue Antigens 69:212–219PubMedCrossRefGoogle Scholar
  9. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCentralPubMedCrossRefGoogle Scholar
  10. Elsner HA, Schroeder M, Blasczyk R (2001) The nucleotide diversity of MICA and MICB suggests the effect of overdominant selection. Tissue Antigens 58:419–421PubMedCrossRefGoogle Scholar
  11. Fodil N, Pellet P, Laloux L, Hauptmann G, Theodorou I, Bahram S (1999) MICA haplotypic diversity. Immunogenetics 49:557–560PubMedCrossRefGoogle Scholar
  12. Jumnainsong A, Romphruk AV, Jearanaikoon P, Klumkrathok K, Romphruk A, Luanrattanakorn S, Leelayuwat C (2007) Association of polymorphic extracellular domains of MICA with cervical cancer in northeastern Thai population. Tissue Antigens 69:326–333PubMedCrossRefGoogle Scholar
  13. Kirsten H, Petit-Teixeira E, Scholz M, Hasenclever D, Hantmann H, Heider D, Wagner U, Sack U, Hugo Teixeira V, Prum B, Burkhardt J, Pierlot C, Emmrich F, Cornelis F, Ahnert P (2009) Association of MICA with rheumatoid arthritis independent of known HLA-DRB1 risk alleles in a family-based and a case control study. Arthritis Res Ther 11:R60PubMedCentralPubMedCrossRefGoogle Scholar
  14. Kumanovics A, Madan A, Qin S, Rowen L, Hood L, Fischer Lindahl K (2002) QUOD ERAT FACIENDUM: sequence analysis of the H2-D and H2-Q regions of 129/SvJ mice. Immunogenetics 54:479–489PubMedCrossRefGoogle Scholar
  15. Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320PubMedCrossRefGoogle Scholar
  16. Lodoen MB, Lanier LL (2006) Natural killer cells as an initial defense against pathogens. Curr Opin Immunol 18:391–398PubMedCrossRefGoogle Scholar
  17. Marsh SG, Albert ED, Bodmer WF, Bontrop RE, Dupont B, Erlich HA, Fernandez-Vina M, Geraghty DE, Holdsworth R, Hurley CK, Lau M, Lee KW, Mach B, Maiers M, Mayr WR, Muller CR, Parham P, Petersdorf EW, Sasazuki T, Strominger JL, Svejgaard A, Terasaki PI, Tiercy JM, Trowsdale J (2010) Nomenclature for factors of the HLA system, 2010. Tissue Antigens 75:291–455PubMedCentralPubMedCrossRefGoogle Scholar
  18. McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654PubMedCrossRefGoogle Scholar
  19. Messier W, Stewart CB (1997) Episodic adaptive evolution of primate lysozymes. Nature 385:151–154PubMedCrossRefGoogle Scholar
  20. Pellet P, Vaneensberghe C, Debre P, Sumyuen MH, Theodorou I (1999) MIC genes in non-human primates. Eur J Immunogenet 26:239–241PubMedCrossRefGoogle Scholar
  21. Perez-Rodriguez M, Arguello JR, Fischer G, Corell A, Cox ST, Robinson J, Hossain E, McWhinnie A, Travers PJ, Marsh SG, Madrigal JA (2002) Further polymorphism of the MICA gene. Eur J Immunogenet 29:35–46PubMedCrossRefGoogle Scholar
  22. Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790PubMedCrossRefGoogle Scholar
  23. Schrambach S, Ardizzone M, Leymarie V, Sibilia J, Bahram S (2007) In vivo expression pattern of MICA and MICB and its relevance to auto-immunity and cancer. PLoS One 2:e518PubMedCentralPubMedCrossRefGoogle Scholar
  24. Seo JW, Bontrop R, Walter L, Gunther E (1999) Major histocompatibility complex-linked MIC genes in rhesus macaques and other primates. Immunogenetics 50:358–362PubMedCrossRefGoogle Scholar
  25. Seo JW, Walter L, Gunther E (2001) Genomic analysis of MIC genes in rhesus macaques. Tissue Antigens 58:159–165PubMedCrossRefGoogle Scholar
  26. Shiina T, Ota M, Shimizu S, Katsuyama Y, Hashimoto N, Takasu M, Anzai T, Kulski JK, Kikkawa E, Naruse T, Kimura N, Yanagiya K, Watanabe A, Hosomichi K, Kohara S, Iwamoto C, Umehara Y, Meyer A, Wanner V, Sano K, Macquin C, Ikeo K, Tokunaga K, Gojobori T, Inoko H, Bahram S (2006) Rapid evolution of major histocompatibility complex class I genes in primates generates new disease alleles in humans via hitchhiking diversity. Genetics 173:1555–1570PubMedCentralPubMedCrossRefGoogle Scholar
  27. Steinle A, Groh V, Spies T (1998) Diversification, expression, and gamma delta T cell recognition of evolutionarily distant members of the MIC family of major histocompatibility complex class I-related molecules. Proc Natl Acad Sci U S A 95:12510–12515PubMedCentralPubMedCrossRefGoogle Scholar
  28. Stephens HA (2001) MICA and MICB genes: can the enigma of their polymorphism be resolved? Trends Immunol 22:378–385PubMedCrossRefGoogle Scholar
  29. Sullivan J (2005) Maximum-likelihood methods for phylogeny estimation. Methods Enzymol 395:757–779PubMedCrossRefGoogle Scholar
  30. Sumitran-Holgersson S (2008) Relevance of MICA and other non-HLA antibodies in clinical transplantation. Curr Opin Immunol 20:607–613PubMedCrossRefGoogle Scholar
  31. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alice Meyer
    • 1
  • Raphael Carapito
    • 1
  • Louise Ott
    • 1
  • Mirjana Radosavljevic
    • 1
  • Philippe Georgel
    • 1
  • Erin J. Adams
    • 2
  • Peter Parham
    • 3
  • Ronald E. Bontrop
    • 4
  • Antoine Blancher
    • 5
    • 6
  • Seiamak Bahram
    • 1
  1. 1.Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie. Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoUSA
  3. 3.Departments of Structural Biology and Microbiology & ImmunologyStanford UniversityStanfordUSA
  4. 4.Department of Comparative GeneticsBiomedical Primate Research CenterRijswijkThe Netherlands
  5. 5.Laboratoire d’immunogénétique Moléculaire EA3034Université Paul SabatierToulouseFrance
  6. 6.Laboratoire d’immunologie, CHU de ToulouseHôpital de RangueilToulouseFrance

Personalised recommendations