, Volume 66, Issue 7–8, pp 479–492 | Cite as

Genomic V exons from whole genome shotgun data in reptiles

  • D. N. Olivieri
  • B. von Haeften
  • C. Sánchez-Espinel
  • J. Faro
  • F. Gambón-Deza
Original Paper


Reptiles and mammals diverged over 300 million years ago, creating two parallel evolutionary lineages amongst terrestrial vertebrates. In reptiles, two main evolutionary lines emerged: one gave rise to Squamata, while the other gave rise to Testudines, Crocodylia, and Aves. In this study, we determined the genomic variable (V) exons from whole genome shotgun sequencing (WGS) data in reptiles corresponding to the three main immunoglobulin (IG) loci and the four main T cell receptor (TR) loci. We show that Squamata lack the TRG and TRD genes, and snakes lack the IGKV genes. In representative species of Testudines and Crocodylia, the seven major IG and TR loci are maintained. As in mammals, genes of the IG loci can be grouped into well-defined IMGT clans through a multi-species phylogenetic analysis. We show that the reptilian IGHV and IGLV genes are distributed amongst the established mammalian clans, while their IGKV genes are found within a single clan, nearly exclusive from the mammalian sequences. The reptilian and mammalian TRAV genes cluster into six common evolutionary clades (since IMGT clans have not been defined for TR). In contrast, the reptilian TRBV genes cluster into three clades, which have few mammalian members. In this locus, the V exon sequences from mammals appear to have undergone different evolutionary diversification processes that occurred outside these shared reptilian clans. These sequences can be obtained in a freely available public repository (


Immunologic repertoire Reptile evolution Immunoglobulin (IG) T cell receptor (TR) Variable (V) gene 



This work was partially supported by the European Union 7th Framework Programme [FP7/REGPOT-2012-2013.1] under grant agreement no. 316265, BIOCAPS. JF acknowledges the support of PIRSES-GA-2012-317893 (7th FP, EC).


  1. Benton M (2005) Vertebrate Palaeontology. Blackwell, OxfordGoogle Scholar
  2. Benton MJ, Donoghue PC (2007) Paleontological evidence to date the tree of life. Mol Biol Evol 24(1):26–53. doi: 10.1093/molbev/msl150 PubMedCrossRefGoogle Scholar
  3. Bosc N, Lefranc MP (2003) The mouse (Mus musculus) T cell receptor alpha (TRA) and delta (TRD) variable genes. Dev Comp Immunol 27(6–7):465–497PubMedCrossRefGoogle Scholar
  4. Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol I, Boisvert S, Chapman JA, Chapuis G, Chikhi R, Chitsaz H, Chou WC, Corbeil J, Del Fabbro C, Docking TR, Durbin R, Earl D, Emrich S, Fedotov P, Fonseca NA, Ganapathy G, Gibbs RA, Gnerre S, Godzaridis E, Goldstein S, Haimel M, Hall G, Haussler D, Hiatt JB, Ho IY, Howard J, Hunt M, Jackman SD, Jaffe DB, Jarvis ED, Jiang H, Kazakov S, Kersey PJ, Kitzman JO, Knight JR, Koren S, Lam TW, Lavenier D, Laviolette F, Li Y, Li Z, Liu B, Liu Y, Luo R, Maccallum I, Macmanes MD, Maillet N, Melnikov S, Naquin D, Ning Z, Otto TD, Paten B, Paulo OS, Phillippy AM, Pina-Martins F, Place M, Przybylski D, Qin X, Qu C, Ribeiro FJ, Richards S, Rokhsar DS, Ruby JG, Scalabrin S, Schatz MC, Schwartz DC, Sergushichev A, Sharpe T, Shaw TI, Shendure J, Shi Y, Simpson JT, Song H, Tsarev F, Vezzi F, Vicedomini R, Vieira BM, Wang J, Worley KC, Yin S, Yiu SM, Yuan J, Zhang G, Zhang H, Zhou S, Korf IF (2013) Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaSci 2(1):10. doi: 10.1186/2047-217x-2-10 CrossRefGoogle Scholar
  5. Cannon JP, Haire RN, Rast JP, Litman GW (2004) The phylogenetic origins of the antigen-binding receptors and somatic diversification mechanisms. Immunol Rev 200:12–22. doi: 10.1111/j.0105-2896.2004.00166.x PubMedCrossRefGoogle Scholar
  6. Charlemagne J, Fellah JS, De Guerra A, Kerfourn F, Partula S (1998) T-cell receptors in ectothermic vertebrates. Immunol Rev 166:87–102PubMedCrossRefGoogle Scholar
  7. Danilova N, Amemiya CT (2009) Going adaptive: the saga of antibodies. Ann N Y Acad Sci 1168:130–155. doi: 10.1111/j.1749-6632.2009.04881.x PubMedCrossRefGoogle Scholar
  8. deBraga M, Rieppel O (1997) Reptile phylogeny and the interrelationships of turtles. Zool J Linnean Soc 120:281–354CrossRefGoogle Scholar
  9. Flajnik MF, Kasahara M (2010) Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 11(1):47–59. doi: 10.1038/nrg2703 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Gambon-Deza F, Sanchez Espinel C, Magadan Mompo S (2009) The immunoglobulin heavy chain locus in the reptile Anolis carolinensis. Mol Immunol 46(8–9):1679–1687. doi: 10.1016/j.molimm.2009.02.019 PubMedCrossRefGoogle Scholar
  11. Gambon-Deza F, Sanchez-Espinel C, Mirete-Bachiller S, Magadan-Mompo S (2012) Snakes antibodies. Dev Comp Immunol 38(1):1–9. doi: 10.1016/j.dci.2012.03.001 PubMedCrossRefGoogle Scholar
  12. Giudicelli V, Lefranc MP (1999) Ontology for immunogenetics: the IMGT-ONTOLOGY. Bioinformatics (Oxford, England) 15(12):1047–1054CrossRefGoogle Scholar
  13. Giudicelli V, Lefranc M (2012) IMGT-ONTOLOGY 2012. Front Genet 3:79. doi: 10.3389/fgene.2012.00079 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Giudicelli V, Chaume D, Lefranc MP (2005) IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res 33(Database Issue):D256–261. doi: 10.1093/nar/gki010 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Glaberman S, Caccone A (2008) Species-specific evolution of class I MHC genes in iguanas (order: Squamata; subfamily: Iguaninae). Immunogenetics 60(7):371–382. doi: 10.1007/s00251-008-0298-y PubMedCrossRefGoogle Scholar
  16. Glaberman S, Du Pasquier L, Caccone A (2008) Characterization of a nonclassical class I MHC gene in a reptile, the Galapagos marine iguana (Amblyrhynchus cristatus). PLoS One 3(8):e2859. doi: 10.1371/journal.pone.0002859 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Glaberman S, Moreno MA, Caccone A (2009) Characterization and evolution of MHC class II B genes in Galapagos marine iguanas (Amblyrhynchus cristatus). Dev Comp Immunol 33(8):939–947. doi: 10.1016/j.dci.2009.03.003 PubMedCrossRefGoogle Scholar
  18. Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11(8):R86. doi: 10.1186/gb-2010-11-8-r86 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27(2):221–224. doi: 10.1093/molbev/msp259 PubMedCrossRefGoogle Scholar
  20. Hedges S, Kumar S (2009) The timetree of life. Oxford Univ Press, New YorkGoogle Scholar
  21. Janes DE, Organ CL, Fujita MK, Shedlock AM, Edwards SV (2010) Genome evolution in Reptilia, the sister group of mammals. Annu Rev Genomics Hum Genet 11:239–264. doi: 10.1146/annurev-genom-082509-141646 PubMedCrossRefGoogle Scholar
  22. Lane J, Duroux P, Lefranc MP (2010) From IMGT-ONTOLOGY to IMGT/LIGMotif: the IMGT standardized approach for immunoglobulin and T cell receptor gene identification and description in large genomic sequences. BMC Bioinforma 11:223. doi: 10.1186/1471-2105-11-223 CrossRefGoogle Scholar
  23. Laurin M (2012) Recent progress in paleontological methods for dating the Tree of Life. Front Genet 3:130. doi: 10.3389/fgene.2012.00130 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Laurin M, Girondot M (1999) Embryo retention in sarcopterygians, and the origin of the extra-embryonic membranes of the amniotic egg. Ann Sci Nat Zool 20:99–104Google Scholar
  25. Laurin M, Reisz RR (1995) A reevaluation of early amniote phylogeny. Zool J Linnean Soc 113(2):165–223. doi: 10.1111/j.1096-3642.1995.tb00932.x CrossRefGoogle Scholar
  26. Lefranc MP (2011) IMGT unique numbering for the variable (V), constant (C), and groove (G) domains of IG, TR, MH, IgSF, and MhSF. Cold Spring Harbor Protocols 2011(6):633–642. doi: 10.1101/pdb.ip85 PubMedGoogle Scholar
  27. Lefranc MP (2014) Immunoglobulin and T cell receptor genes: IMGT((R)) and the birth and rise of immunoinformatics. Front Immunol 5:22. doi: 10.3389/fimmu.2014.00022 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Lefranc M, Lefranc G (2001a) The immunoglobulin factsbook. Academic, LondonGoogle Scholar
  29. Lefranc MP, Lefranc G (2001b) The T cell receptor factsbook, 1st edn. Academic, LondonGoogle Scholar
  30. Lefranc MP, Pommie C, Ruiz M, Giudicelli V, Foulquier E, Truong L, Thouvenin-Contet V, Lefranc G (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27(1):55–77PubMedCrossRefGoogle Scholar
  31. Lefranc MP, Giudicelli V, Ginestoux C, Jabado-Michaloud J, Folch G, Bellahcene F, Wu Y, Gemrot E, Brochet X, Lane J, Regnier L, Ehrenmann F, Lefranc G, Duroux P (2009) IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res 37(Database Issue):D1006–1012. doi: 10.1093/nar/gkn838 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Li L, Wang T, Sun Y, Cheng G, Yang H, Wei Z, Wang P, Hu X, Ren L, Meng Q, Zhang R, Guo Y, Hammarstrom L, Li N, Zhao Y (2012) Extensive diversification of IgD-, IgY-, and truncated IgY(deltaFc)-encoding genes in the red-eared turtle (Trachemys scripta elegans). J Immunol (Baltimore, Md: 1950) 189(8):3995–4004. doi: 10.4049/jimmunol.1200188 CrossRefGoogle Scholar
  33. Magadan-Mompo S, Sanchez-Espinel C, Gambon-Deza F (2013a) IgH loci of American alligator and saltwater crocodile shed light on IgA evolution. Immunogenetics 65(7):531–541. doi: 10.1007/s00251-013-0692-y PubMedCrossRefGoogle Scholar
  34. Magadan-Mompo S, Sanchez-Espinel C, Gambon-Deza F (2013b) Immunoglobulin genes of the turtles. Immunogenetics 65(3):227–237. doi: 10.1007/s00251-012-0672-7 PubMedCrossRefGoogle Scholar
  35. Modesto SP, Anderson JS (2004) The phylogenetic definition of reptilia. Syst Biol 53(5):815–821. doi: 10.1080/10635150490503026 PubMedCrossRefGoogle Scholar
  36. Narciso JE, Uy ID, Cabang AB, Chavez JF, Pablo JL, Padilla-Concepcion GP, Padlan EA (2011) Analysis of the antibody structure based on high-resolution crystallographic studies. New Biotechnol 28(5):435–447. doi: 10.1016/j.nbt.2011.03.012 CrossRefGoogle Scholar
  37. Olivieri D, Faro J, von Haeften B, Sanchez-Espinel C, Gambon-Deza F (2013) An automated algorithm for extracting functional immunologic V-genes from genomes in jawed vertebrates. Immunogenetics 65(9):691–702. doi: 10.1007/s00251-013-0715-8 PubMedCrossRefGoogle Scholar
  38. Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5(3):e9490. doi: 10.1371/journal.pone.0009490 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Reisz RR, Muller J (2004) Molecular timescales and the fossil record: a paleontological perspective. Trends Genetics: TIG 20(5):237–241. doi: 10.1016/j.tig.2004.03.007 CrossRefGoogle Scholar
  40. Schroeder HW Jr, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125(2 Suppl 2):S41–52. doi: 10.1016/j.jaci.2009.09.046 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Sela-Culang I, Kunik V, Ofran Y (2013) The structural basis of antibody–antigen recognition. Front Immunol 4:302. doi: 10.3389/fimmu.2013.00302 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Sievers F, Higgins DG (2014) Clustal Omega, accurate alignment of very large numbers of sequences. MethodsMol Biol (Clifton, NJ) 1079:105–116. doi: 10.1007/978-1-62703-646-7_6 Google Scholar
  43. Sun Y, Wei Z, Hammarstrom L, Zhao Y (2011) The immunoglobulin delta gene in jawed vertebrates: a comparative overview. Dev Comp Immunol 35(9):975–981. doi: 10.1016/j.dci.2010.12.010 PubMedCrossRefGoogle Scholar
  44. Sun Y, Wei Z, Li N, Zhao Y (2013) A comparative overview of immunoglobulin genes and the generation of their diversity in tetrapods. Dev Comp Immunol 39(1–2):103–109. doi: 10.1016/j.dci.2012.02.008 PubMedCrossRefGoogle Scholar
  45. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi: 10.1093/molbev/msr121 PubMedCentralPubMedCrossRefGoogle Scholar
  46. van Tuinen M, Hadly E (2004) Error in estimation of rate and time inferred from the early amniote fossil record and avian molecular clocks. J Mol Evol 59(2):267–276PubMedCrossRefGoogle Scholar
  47. Wei Z, Wu Q, Ren L, Hu X, Guo Y, Warr GW, Hammarstrom L, Li N, Zhao Y (2009) Expression of IgM, IgD, and IgY in a reptile, Anolis carolinensis. J Immunol (Baltimore, Md: 1950) 183(6):3858–3864. doi: 10.4049/jimmunol.0803251 CrossRefGoogle Scholar
  48. Wu Q, Wei Z, Yang Z, Wang T, Ren L, Hu X, Meng Q, Guo Y, Zhu Q, Robert J, Hammarstrom L, Li N, Zhao Y (2010) Phylogeny, genomic organization and expression of lambda and kappa immunoglobulin light chain genes in a reptile, Anolis carolinensis. Dev Comp Immunol 34(5):579–589. doi: 10.1016/j.dci.2009.12.019 PubMedCrossRefGoogle Scholar
  49. Xu Z, Wang GL, Nie P (2009) IgM, IgD and IgY and their expression pattern in the Chinese soft-shelled turtle Pelodiscus sinensis. Mol Immunol 46(10):2124–2132. doi: 10.1016/j.molimm.2009.03.028 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • D. N. Olivieri
    • 1
  • B. von Haeften
    • 2
  • C. Sánchez-Espinel
    • 3
  • J. Faro
    • 4
    • 5
    • 6
  • F. Gambón-Deza
    • 5
    • 7
  1. 1.School of Computer EngineeringUniversity of VigoOurenseSpain
  2. 2.Area of Immunology, Faculty of BiologyUniversity of VigoVigoSpain
  3. 3.Nanoimmunotech SLVigoSpain
  4. 4.Immunology, Faculty of Biology, and Biomedical Research Center (CINBIO)University of VigoVigoSpain
  5. 5.Instituto Biomédico de VigoVigoSpain
  6. 6.Instituto Gulbenkian de CienciaOeirasPortugal
  7. 7.Servicio Gallego de Salud (SERGAS), Unidad de InmunologiaHospital do MeixoeiroVigoSpain

Personalised recommendations