Immunogenetics

, Volume 65, Issue 12, pp 841–849 | Cite as

The repertoire of MHC class I genes in the common marmoset: evidence for functional plasticity

  • Marit K. van der Wiel
  • Nel Otting
  • Natasja G. de Groot
  • Gaby G. M. Doxiadis
  • Ronald E. Bontrop
Original Paper

Abstract

In humans, the classical antigen presentation function of major histocompatibility complex (MHC) class I molecules is controlled by the human leukocyte antigen HLA-A, HLA-B and HLA-C loci. A similar observation has been made for great apes and Old World monkey species. In contrast, a New World monkey species such as the cotton-top tamarin (Saguinus oedipus) appears to employ the G locus for its classical antigen presentation function. At present, little is known about the classical MHC class I repertoire of the common marmoset (Callithrix jacchus), another New World monkey that is widely used in biomedical research. In the present population study, no evidence has been found for abundant transcription of classical I class genes. However, in each common marmoset, four to seven different G-like alleles were detected, suggesting that the ancestral locus has been subject to expansion. Segregation studies provided evidence for at least two G-like genes present per haplotype, which are transcribed by a variety of cell types. The alleles of these Caja-G genes cluster in separate lineages, suggesting that the loci diversified considerably after duplication. Phylogenetic analyses of the introns confirm that the Caja-G loci cluster in the vicinity of HLA-G, indicating that both genes shared an ancestor. In contrast to HLA-G, Caja-G shows considerable polymorphism at the peptide-binding sites. This observation, together with the lack of detectable transcripts of A and B-like genes, indicates that Caja-G genes have taken over the function of classical class I genes. These data highlight the extreme plasticity of the MHC class I gene system.

Keywords

Nonhuman primates MHC New World monkey Common marmoset Evolution 

References

  1. Antunes SG, de Groot NG, Brok H, Doxiadis G, Menezes AA, Otting N, Bontrop RE (1998) The common marmoset: a new world primate species with limited Mhc class II variability. Proc Natl Acad Sci U S A 95:11745–11750PubMedCrossRefGoogle Scholar
  2. Arnaiz-Villena A, Morales P, Gomez-Casado E, Castro MJ, Varela P, Rojo-Amigo R, Martinez-Laso J (1999) Evolution of MHC-G in primates: a different kind of molecule for each group of species. J Reprod Immunol 43:111–125PubMedCrossRefGoogle Scholar
  3. Benirschke K, Anderson JM, Brownhill LE (1962) Marrow chimerism in marmosets. Science 138:513–515PubMedCrossRefGoogle Scholar
  4. Bontrop RE (2006) Comparative genetics of MHC polymorphisms in different primate species: duplications and deletions. Hum Immunol 67:388–397PubMedCrossRefGoogle Scholar
  5. Boyson JE, Iwanaga KK, Golos TG, Watkins DI (1996) Identification of the rhesus monkey HLA-G ortholog. Mamu-G is a pseudogene. J Immunol 157:5428–5437PubMedGoogle Scholar
  6. Boyson JE, Iwanaga KK, Golos TG, Watkins DI (1997) Identification of a novel MHC class I gene, Mamu-AG, expressed in the placenta of a primate with an inactivated G locus. J Immunol 159:3311–3321PubMedGoogle Scholar
  7. Cadavid LF, Hughes AL, Watkins DI (1996) MHC class I-processed pseudogenes in New World primates provide evidence for rapid turnover of MHC class I genes. J Immunol 157:2403–2409PubMedGoogle Scholar
  8. Cadavid LF, Shufflebotham C, Ruiz FJ, Yeager M, Hughes AL, Watkins DI (1997) Evolutionary instability of the major histocompatibility complex class I loci in New World primates. Proc Natl Acad Sci U S A 94:14536–14541PubMedCrossRefGoogle Scholar
  9. Castro MJ, Morales P, Fernandez-Soria V, Suarez B, Recio MJ, Alvarez M, Martin-Villa M, Arnaiz-Villena A (1996) Allelic diversity at the primate Mhc-G locus: exon 3 bears stop codons in all Cercopithecinae sequences. Immunogenetics 43:327–336PubMedCrossRefGoogle Scholar
  10. Cox C, Chang S, Karran L, Griffin B, Wedderburn N (1996) Persistent Epstein–Barr virus infection in the common marmoset (Callithrix jacchus). J Gen Virol 77(Pt 6):1173–1180PubMedCrossRefGoogle Scholar
  11. Daza-Vamenta R, Glusman G, Rowen L, Guthrie B, Geraghty DE (2004) Genetic divergence of the rhesus macaque major histocompatibility complex. Genome Res 14:1501–1515PubMedCrossRefGoogle Scholar
  12. de Groot NG, Otting N, Robinson J, Blancher A, Lafont BA, Marsh SG, O’Connor DH, Shiina T, Walter L, Watkins DI, Bontrop RE (2012) Nomenclature report on the major histocompatibility complex genes and alleles of Great Ape, Old and New World monkey species. Immunogenetics 64:615–631PubMedCrossRefGoogle Scholar
  13. Doxiadis GG, van der Wiel MK, Brok HP, de Groot NG, Otting N, t Hart BA, van Rood JJ, Bontrop RE (2006) Reactivation by exon shuffling of a conserved HLA-DR3-like pseudogene segment in a New World primate species. Proc Natl Acad Sci U S A 103:5864–5868PubMedCrossRefGoogle Scholar
  14. Geula C, Nagykery N, Wu CK (2002) Amyloid-beta deposits in the cerebral cortex of the aged common marmoset (Callithrix jacchus): incidence and chemical composition. Acta Neuropathol 103:48–58PubMedCrossRefGoogle Scholar
  15. Greene JM, Wiseman RW, Lank SM, Bimber BN, Karl JA, Burwitz BJ, Lhost JJ, Hawkins OE, Kunstman KJ, Broman KW, Wolinsky SM, Hildebrand WH, O’Connor DH (2011) Differential MHC class I expression in distinct leukocyte subsets. BMC Immunol 12:39PubMedCrossRefGoogle Scholar
  16. Jagessar SA, Heijmans N, Blezer EL, Bauer J, Blokhuis JH, Wubben JA, Drijfhout JW, van den Elsen PJ, Laman JD, Hart BA (2012) Unravelling the T-cell-mediated autoimmune attack on CNS myelin in a new primate EAE model induced with MOG34-56 peptide in incomplete adjuvant. Eur J Immunol 42:217–227PubMedCrossRefGoogle Scholar
  17. Knapp LA, Cadavid LF, Watkins DI (1998) The MHC-E locus is the most well conserved of all known primate class I histocompatibility genes. J Immunol 160:189–196PubMedGoogle Scholar
  18. Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, DeMars R (1990) A class I antigen, HLA-G, expressed in human trophoblasts. Science 248:220–223PubMedCrossRefGoogle Scholar
  19. Kulski JK, Anzai T, Shiina T, Inoko H (2004) Rhesus macaque class I duplicon structures, organization, and evolution within the alpha block of the major histocompatibility complex. Mol Biol Evol 21:2079–2091PubMedCrossRefGoogle Scholar
  20. Langat DK, Morales PJ, Fazleabas AT, Mwenda JM, Hunt JS (2002) Baboon placentas express soluble and membrane-bound Paan-AG proteins encoded by alternatively spliced transcripts of the class Ib major histocompatibility complex gene, Paan-AG. Immunogenetics 54:164–173PubMedCrossRefGoogle Scholar
  21. Lin ZY, Imamura M, Sano C, Nakajima R, Suzuki T, Yamadera R, Takehara Y, Okano HJ, Sasaki E, Okano H (2012) Molecular signatures to define spermatogenic cells in common marmoset (Callithrix jacchus). Reproduction 143:597–609PubMedCrossRefGoogle Scholar
  22. Marsh SG, Albert ED, Bodmer WF, Bontrop RE, Dupont B, Erlich HA, Fernandez-Vina M, Geraghty DE, Holdsworth R, Hurley CK, Lau M, Lee KW, Mach B, Maiers M, Mayr WR, Muller CR, Parham P, Petersdorf EW, Sasazuki T, Strominger JL, Svejgaard A, Terasaki PI, Tiercy JM, Trowsdale J (2010) Nomenclature for factors of the HLA system, 2010. Tissue Antigens 75:291–455PubMedCrossRefGoogle Scholar
  23. O’Connor DH, Mothe BR, Weinfurter JT, Fuenger S, Rehrauer WM, Jing P, Rudersdorf RR, Liebl ME, Krebs K, Vasquez J, Dodds E, Loffredo J, Martin S, McDermott AB, Allen TM, Wang C, Doxiadis GG, Montefiori DC, Hughes A, Burton DR, Allison DB, Wolinsky SM, Bontrop R, Picker LJ, Watkins DI (2003) Major histocompatibility complex class I alleles associated with slow simian immunodeficiency virus disease progression bind epitopes recognized by dominant acute-phase cytotoxic-T-lymphocyte responses. J Virol 77:9029–9040PubMedCrossRefGoogle Scholar
  24. Otting N, Heijmans CM, Noort RC, de Groot NG, Doxiadis GG, van Rood JJ, Watkins DI, Bontrop RE (2005) Unparalleled complexity of the MHC class I region in rhesus macaques. Proc Natl Acad Sci U S A 102:1626–1631PubMedCrossRefGoogle Scholar
  25. Ouyang D, He X, Xu L, Wang X, Gao Q, Guo H (2010) Differential cell surface expression of rhesus macaque’s major histocompatibility complex class I alleles Mamu-B*1703 and Mamu-B*0101. Acta Biochim Biophys Sin (Shanghai) 42:281–287CrossRefGoogle Scholar
  26. Parham P, Moffett A (2013) Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution. Nat Rev Immunol 13:133–144PubMedCrossRefGoogle Scholar
  27. Parham P, Ohta T (1996) Population biology of antigen presentation by MHC class I molecules. Science 272:67–74PubMedCrossRefGoogle Scholar
  28. Parham P, Norman PJ, Abi-Rached L, Hilton HG, Guethlein LA (2012) Review: immunogenetics of human placentation. Placenta 33(Suppl):S71–S80PubMedCrossRefGoogle Scholar
  29. Philippens IH, t Hart BA, Torres G (2010) The MPTP marmoset model of parkinsonism: a multi-purpose non-human primate model for neurodegenerative diseases. Drug Discov Today 15:985–990PubMedCrossRefGoogle Scholar
  30. Pinto MA, Marchevsky RS, Baptista ML, de Lima MA, Pelajo-Machado M, Vitral CL, Kubelka CF, Pissurno JW, Franca MS, Schatzmayr HG, Gaspar AM (2002) Experimental hepatitis A virus (HAV) infection in Callithrix jacchus: early detection of HAV antigen and viral fate. Exp Toxicol Pathol 53:413–420PubMedCrossRefGoogle Scholar
  31. Prasad S, Humphreys I, Kireta S, Gilchrist RB, Bardy P, Russ GR, Coates PT (2007) The common marmoset as a novel preclinical transplant model: identification of new MHC class II DRB alleles and prediction of in vitro alloreactivity. Tissue Antigens 69(Suppl 1):72–75PubMedCrossRefGoogle Scholar
  32. Rolleke U, Flugge G, Plehm S, Schlumbohm C, Armstrong VW, Dressel R, Uchanska-Ziegler B, Ziegler A, Fuchs E, Czeh B, Walter L (2006) Differential expression of major histocompatibility complex class I molecules in the brain of a New World monkey, the common marmoset (Callithrix jacchus). J Neuroimmunol 176:39–50PubMedCrossRefGoogle Scholar
  33. Rosner C, Kruse PH, Lubke T, Walter L (2010) Erratum to: rhesus macaque MHC class I molecules show differential subcellular localizations. Immunogenetics 62:409–418PubMedCrossRefGoogle Scholar
  34. Seehase S, Lauenstein HD, Schlumbohm C, Switalla S, Neuhaus V, Forster C, Fieguth HG, Pfennig O, Fuchs E, Kaup FJ, Bleyer M, Hohlfeld JM, Braun A, Sewald K, Knauf S (2012) LPS-induced lung inflammation in marmoset monkeys - an acute model for anti-inflammatory drug testing. PLoS One 7:e43709PubMedCrossRefGoogle Scholar
  35. Shiina T, Kono A, Westphal N, Suzuki S, Hosomichi K, Kita YF, Roos C, Inoko H, Walter L (2011) Comparative genome analysis of the major histocompatibility complex (MHC) class I B/C segments in primates elucidated by genomic sequencing in common marmoset (Callithrix jacchus). Immunogenetics 63:485–499PubMedCrossRefGoogle Scholar
  36. t Hart BA, van Meurs M, Brok HP, Massacesi L, Bauer J, Boon L, Bontrop RE, Laman JD (2000) A new primate model for multiple sclerosis in the common marmoset. Immunol Today 21:290–297CrossRefGoogle Scholar
  37. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  38. Trowsdale J, Moffett A (2008) NK receptor interactions with MHC class I molecules in pregnancy. Semin Immunol 20:317–320PubMedCrossRefGoogle Scholar
  39. van Bergen J, Trowsdale J (2012) Ligand specificity of Killer cell immunoglobulin-like receptors: a brief history of KIR. Front Immunol 3:394PubMedGoogle Scholar
  40. von Schonfeldt V, Chandolia R, Kiesel L, Nieschlag E, Schlatt S, Sonntag B (2011) Advanced follicle development in xenografted prepubertal ovarian tissue: the common marmoset as a nonhuman primate model for ovarian tissue transplantation. Fertil Steril 95:1428–1434CrossRefGoogle Scholar
  41. Ward JM, Vallender EJ (2012) The resurgence and genetic implications of New World primates in biomedical research. Trends Genet 28:586–591PubMedCrossRefGoogle Scholar
  42. Watkins DI, Hodi FS, Letvin NL (1988) A primate species with limited major histocompatibility complex class I polymorphism. Proc Natl Acad Sci U S A 85:7714–7718PubMedCrossRefGoogle Scholar
  43. Watkins DI, Chen ZW, Hughes AL, Evans MG, Tedder TF, Letvin NL (1990) Evolution of the MHC class I genes of a New World primate from ancestral homologues of human non-classical genes. Nature 346:60–63PubMedCrossRefGoogle Scholar
  44. Watkins DI, Garber TL, Chen ZW, Toukatly G, Hughes AL, Letvin NL (1991) Unusually limited nucleotide sequence variation of the expressed major histocompatibility complex class I genes of a New World primate species (Saguinus oedipus). Immunogenetics 33:79–89PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marit K. van der Wiel
    • 1
  • Nel Otting
    • 1
    • 2
  • Natasja G. de Groot
    • 1
  • Gaby G. M. Doxiadis
    • 1
  • Ronald E. Bontrop
    • 1
    • 3
  1. 1.Department of Comparative Genetics and RefinementBiomedical Primate Research CentreRijswijkThe Netherlands
  2. 2.Biomedical Primate Research CentreRijswijkThe Netherlands
  3. 3.Department of Biology, Theoretical Biology and BioinformaticsUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations