Advertisement

Immunogenetics

, Volume 65, Issue 10, pp 711–724 | Cite as

NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ

  • Edita KarosieneEmail author
  • Michael Rasmussen
  • Thomas Blicher
  • Ole Lund
  • Søren Buus
  • Morten Nielsen
Original Paper

Abstract

Major histocompatibility complex class II (MHCII) molecules play an important role in cell-mediated immunity. They present specific peptides derived from endosomal proteins for recognition by T helper cells. The identification of peptides that bind to MHCII molecules is therefore of great importance for understanding the nature of immune responses and identifying T cell epitopes for the design of new vaccines and immunotherapies. Given the large number of MHC variants, and the costly experimental procedures needed to evaluate individual peptide–MHC interactions, computational predictions have become particularly attractive as first-line methods in epitope discovery. However, only a few so-called pan-specific prediction methods capable of predicting binding to any MHC molecule with known protein sequence are currently available, and all of them are limited to HLA-DR. Here, we present the first pan-specific method capable of predicting peptide binding to any HLA class II molecule with a defined protein sequence. The method employs a strategy common for HLA-DR, HLA-DP and HLA-DQ molecules to define the peptide-binding MHC environment in terms of a pseudo sequence. This strategy allows the inclusion of new molecules even from other species. The method was evaluated in several benchmarks and demonstrates a significant improvement over molecule-specific methods as well as the ability to predict peptide binding of previously uncharacterised MHCII molecules. To the best of our knowledge, the NetMHCIIpan-3.0 method is the first pan-specific predictor covering all HLA class II molecules with known sequences including HLA-DR, HLA-DP, and HLA-DQ. The NetMHCpan-3.0 method is available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.0.

Keywords

MHC class II T cell epitope MHC binding specificity Peptide–MHC binding Human leukocyte antigens Artificial neural networks 

Notes

Acknowledgments

MN is a researcher at the Argentinean national research council (CONICET). This project has been funded in whole or in part with federal funds from the National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under contract nos. HHSN272201200010C and HHSN272200900045C.

Supplementary material

251_2013_720_MOESM1_ESM.doc (203 kb)
ESM 1 (DOC 203 kb)

References

  1. Andreatta M, Nielsen M (2012) Characterizing the binding motifs of 11 common human HLA-DP and HLA-DQ molecules using NNAlign. Immunology 136(3):306–311. doi: 10.1111/j.1365-2567.2012.03579.x PubMedCrossRefGoogle Scholar
  2. Andreatta M, Schafer-Nielsen C, Lund O, Buus S, Nielsen M (2011) NNAlign: a web-based prediction method allowing non-expert end-user discovery of sequence motifs in quantitative peptide data. PLoS One 6(11):e26781. doi: 10.1371/journal.pone.0026781 PubMedCrossRefGoogle Scholar
  3. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242Google Scholar
  4. Castellino F, Zhong G, Germain RN (1997) Antigen presentation by MHC class II molecules: invariant chain function, protein trafficking, and the molecular basis of diverse determinant capture. Hum Immunol 54(2):159–169PubMedCrossRefGoogle Scholar
  5. Dai S, Murphy GA, Crawford F, Mack DG, Falta MT, Marrack P, Kappler JW, Fontenot AP (2010) Crystal structure of HLA-DP2 and implications for chronic beryllium disease. Proc Natl Acad Sci U S A 107(16):7425–7430PubMedCrossRefGoogle Scholar
  6. Ghosh P, Amaya M, Mellins E, Wiley DC (1995) The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature 378(6556):457–462. doi: 10.1038/378457a0 PubMedCrossRefGoogle Scholar
  7. Gonzalez-Galarza FF, Christmas S, Middleton D, Jones AR (2011) Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations. Nucleic Acids Res 39(Database issue):D913–D919PubMedCrossRefGoogle Scholar
  8. Hobohm U, Scharf M, Schneider R, Sander C (1992) Selection of representative protein data sets. Protein Sci 1(3):409–417. doi: 10.1002/pro.5560010313 PubMedCrossRefGoogle Scholar
  9. Hoof I, Peters B, Sidney J, Pedersen LE, Sette A, Lund O, Buus S, Nielsen M (2009) NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 61(1):1–13. doi: 10.1007/s00251-008-0341-z PubMedCrossRefGoogle Scholar
  10. Karosiene E, Lundegaard C, Lund O, Nielsen M (2012) NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics 64(3):177–186. doi: 10.1007/s00251-011-0579-8 PubMedCrossRefGoogle Scholar
  11. Kim CY, Quarsten H, Bergseng E, Khosla C, Sollid LM (2004) Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci U S A 101(12):4175–4179. doi: 10.1073/pnas.0306885101 PubMedCrossRefGoogle Scholar
  12. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):142–143CrossRefGoogle Scholar
  13. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948PubMedCrossRefGoogle Scholar
  14. Lee KH, Wucherpfennig KW, Wiley DC (2001) Structure of a human insulin peptide-HLA-DQ8 complex and susceptibility to type 1 diabetes. Nat Immunol 2(6):501–507. doi: 10.1038/88694 PubMedCrossRefGoogle Scholar
  15. Lund O, Nielsen M, Kesmir C, Petersen AG, Lundegaard C, Worning P, Sylvester-Hvid C, Lamberth K, Roder G, Justesen S, Buus S, Brunak S (2004) Definition of supertypes for HLA molecules using clustering of specificity matrices. Immunogenetics 55(12):797–810. doi: 10.1007/s00251-004-0647-4 PubMedCrossRefGoogle Scholar
  16. Nene V, Svitek N, Toye P, Golde WT, Barlow J, Harndahl M, Buus S, Nielsen M (2012) Designing bovine T cell vaccines via reverse immunology. Ticks Tick Borne Dis 3(3):188–192PubMedCrossRefGoogle Scholar
  17. Nielsen M, Justesen S, Lund O, Lundegaard C, Buus S (2010a) NetMHCIIpan-2.0—improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure. Immunome Res 6:9PubMedCrossRefGoogle Scholar
  18. Nielsen M, Lund O (2009) NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinforma 10:296CrossRefGoogle Scholar
  19. Nielsen M, Lund O, Buus S, Lundegaard C (2010b) MHC class II epitope predictive algorithms. Immunology 130(3):319–328. doi: 10.1111/j.1365-2567.2010.03268.x PubMedCrossRefGoogle Scholar
  20. Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, Roder G, Peters B, Sette A, Lund O, Buus S (2007a) NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS One 2(8):e796. doi: 10.1371/journal.pone.0000796 PubMedCrossRefGoogle Scholar
  21. Nielsen M, Lundegaard C, Blicher T, Peters B, Sette A, Justesen S, Buus S, Lund O (2008) Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Comput Biol 4(7):e1000107. doi: 10.1371/journal.pcbi.1000107 PubMedCrossRefGoogle Scholar
  22. Nielsen M, Lundegaard C, Lund O (2007b) Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinforma 8:238CrossRefGoogle Scholar
  23. Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12(5):1007–1017. doi: 10.1110/ps.0239403 PubMedCrossRefGoogle Scholar
  24. Robinson J, Waller MJ, Parham P, Bodmer JG, Marsh SG (2001) IMGT/HLA Database—a sequence database for the human major histocompatibility complex. Nucleic Acids Res 29(1):210–213PubMedCrossRefGoogle Scholar
  25. Schrodinger, LLC (2010) The PyMOL molecular graphics system, version 1.3r1Google Scholar
  26. Sette A, Sidney J (1999) Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics 50(3–4):201–212PubMedCrossRefGoogle Scholar
  27. Sturniolo T, Bono E, Ding J, Raddrizzani L, Tuereci O, Sahin U, Braxenthaler M, Gallazzi F, Protti MP, Sinigaglia F, Hammer J (1999) Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol 17(6):555–561. doi: 10.1038/9858 PubMedCrossRefGoogle Scholar
  28. Thomsen M, Lundegaard C, Buus S, Lund O, Nielsen M (2013) MHCcluster, a method for functional clustering of MHC molecules. Immunogenetics. doi: 10.1007/s00251-013-0714-9 PubMedGoogle Scholar
  29. Thomsen MC, Nielsen M (2012) Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion. Nucleic Acids Res 40(Web Server issue):W281–W287PubMedCrossRefGoogle Scholar
  30. Vita R, Zarebski L, Greenbaum JA, Emami H, Hoof I, Salimi N, Damle R, Sette A, Peters B (2010) The immune epitope database 2.0. Nucleic Acids Res 38(Database issue):D854–D862PubMedCrossRefGoogle Scholar
  31. Zaitlen N, Reyes-Gomez M, Heckerman D, Jojic N (2008) Shift-invariant adaptive double threading: learning MHC II-peptide binding. J Comput Biol 15(7):927–942. doi: 10.1089/cmb.2007.0183 PubMedCrossRefGoogle Scholar
  32. Zhang GL, Khan AM, Srinivasan KN, August JT, Brusic V (2005) MULTIPRED: a computational system for prediction of promiscuous HLA binding peptides. Nucleic Acids Res 33(Web Server issue):W172–W179PubMedCrossRefGoogle Scholar
  33. Zhang H, Lund O, Nielsen M (2009a) The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding. Bioinformatics 25(10):1293–1299PubMedCrossRefGoogle Scholar
  34. Zhang H, Lundegaard C, Nielsen M (2009b) Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods. Bioinformatics 25(1):83–89. doi: 10.1093/bioinformatics/btn579 PubMedCrossRefGoogle Scholar
  35. Zhang L, Chen Y, Wong HS, Zhou S, Mamitsuka H, Zhu S (2012) TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules. PLoS One 7(2):e30483. doi: 10.1371/journal.pone.0030483 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Edita Karosiene
    • 1
    Email author
  • Michael Rasmussen
    • 2
  • Thomas Blicher
    • 3
  • Ole Lund
    • 1
  • Søren Buus
    • 2
  • Morten Nielsen
    • 1
    • 4
  1. 1.Center for Biological Sequence Analysis, Department of Systems BiologyTechnical University of DenmarkLyngbyDenmark
  2. 2.Laboratory of Experimental Immunology, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
  3. 3.The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
  4. 4.Instituto de Investigaciones BiotecnológicasUniversidad Nacional de San MartínSan MartínArgentina

Personalised recommendations