Immunogenetics

, Volume 65, Issue 5, pp 371–386 | Cite as

Peptide-binding motifs associated with MHC molecules common in Chinese rhesus macaques are analogous to those of human HLA supertypes and include HLA-B27-like alleles

  • Bianca R. Mothé
  • Scott Southwood
  • John Sidney
  • A. Michelle English
  • Amanda Wriston
  • Ilka Hoof
  • Jeffrey Shabanowitz
  • Donald F. Hunt
  • Alessandro Sette
Original Paper

Abstract

Chinese rhesus macaques are of particular interest in simian immunodeficiency virus/human immunodeficiency virus (SIV/HIV) research as these animals have prolonged kinetics of disease progression to acquired immunodeficiency syndrome (AIDS), compared to their Indian counterparts, suggesting that they may be a better model for HIV. Nevertheless, the specific mechanism(s) accounting for these kinetics remains unclear. The study of major histocompatibility complex (MHC) molecules, including their MHC/peptide-binding motifs, provides valuable information for measuring cellular immune responses and deciphering outcomes of infection and vaccine efficacy. In this study, we have provided detailed characterization of six prevalent Chinese rhesus macaque MHC class I alleles, yielding a combined phenotypic frequency of 29 %. The peptide-binding specificity of two of these alleles, Mamu-A2*01:02 and Mamu-B*010:01, as well as the previously characterized allele Mamu-B*003:01 (and Indian rhesus Mamu-B*003:01), was found to be analogous to that of alleles in the HLA-B27 supertype family. Specific alleles in the HLA-B27 supertype family, including HLA-B*27:05, have been associated with long-term nonprogression to AIDS in humans. All six alleles characterized in the present study were found to have specificities analogous to HLA supertype alleles. These data contribute to the concept that Chinese rhesus macaque MHC immunogenetics is more similar to HLA than their Indian rhesus macaque counterparts and thereby warrants further studies to decipher the role of these alleles in the context of SIV infection.

Keywords

MHC Nonhuman primate Chinese rhesus macaques MHC/peptide-binding motif 

Supplementary material

251_2013_686_MOESM1_ESM.pdf (60 kb)
ESM 1Development of MHC:peptide-binding assays: identification of high affinity radiolabeled ligands in direct binding assays. Various peptide ligands were used as radiolabel probes in direct binding MHC dose titration experiments to ascertain binding potential to purified MHC class I molecules. The optimal radiolabeled identified for each assay was: SHSHVGYTL for Mamu-A2*01:02, RAEDNADYL for Mamu-A7*01:03, YFAIAENESK for Mamu-B*066:01, MSAPPAEYK for Mamu-B*090:01, SDIDGDRYV for Mamu-B*087:01, and SHIDRVYTL for Mamu-B*010:01. Peptides identified as high affinity radiolabeled ligands for various other assays were utilized as negative controls (as indicated) to demonstrate assay specificity. (PDF 60 kb)
251_2013_686_MOESM2_ESM.pdf (56 kb)
ESM 2(PDF 56 kb)
251_2013_686_MOESM3_ESM.pdf (65 kb)
ESM 3(PDF 65 kb)
251_2013_686_MOESM4_ESM.pdf (2 mb)
ESM 4(PDF 2073 kb)

References

  1. Allen TM, Mothe BR, Sidney J, Jing P, Dzuris JL, Liebl ME, Vogel TU, O’Connor DH, Wang X, Wussow MC, Thomson JA, Altman JD, Watkins DI, Sette A (2001) CD8(+) lymphocytes from simian immunodeficiency virus-infected rhesus macaques recognize 14 different epitopes bound by the major histocompatibility complex class I molecule mamu-A*01: implications for vaccine design and testing. J Virol 75:738–749PubMedCrossRefGoogle Scholar
  2. Bairoch A, Apweiler R (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28:45–48PubMedCrossRefGoogle Scholar
  3. Bertoni R, Sette A, Sidney J, Guidotti LG, Shapiro M, Purcell R, Chisari FV (1998) Human class I supertypes and CTL repertoires extend to chimpanzees. J Immunol 161:4447–4455PubMedGoogle Scholar
  4. Campillo-Gimenez L, Laforge M, Fay M, Brussel A, Cumont MC, Monceaux V, Diop O, Levy Y, Hurtrel B, Zaunders J, Corbeil J, Elbim C, Estaquier J (2010) Nonpathogenesis of simian immunodeficiency virus infection is associated with reduced inflammation and recruitment of plasmacytoid dendritic cells to lymph nodes, not to lack of an interferon type I response, during the acute phase. J Virol 84:1838–1846PubMedCrossRefGoogle Scholar
  5. Chen GL, Lau YF, Lamirande EW, McCall AW, Subbarao K (2011) Seasonal influenza infection and live vaccine prime for a response to the 2009 pandemic H1N1 vaccine. Proc Natl Acad Sci U S A 108:1140–1145Google Scholar
  6. Chen H, Ndhlovu ZM, Liu D, Porter LC, Fang JW, Darko S, Brockman MA, Miura T, Brumme ZL, Schneidewind A, Piechocka-Trocha A, Cesa KT, Sela J, Cung TD, Toth I, Pereyra F, Yu XG, Douek DC, Kaufmann DE, Allen TM, Walker BD (2012) TCR clonotypes modulate the protective effect of HLA class I molecules in HIV-1 infection. Nat Immunol 13:691–700PubMedCrossRefGoogle Scholar
  7. Chen ZW, Shen L, Miller MD, Ghim SH, Hughes AL, Letvin NL (1992) Cytotoxic T lymphocytes do not appear to select for mutations in an immunodominant epitope of simian immunodeficiency virus gag. J Immunol 149:4060–4066PubMedGoogle Scholar
  8. Dzuris JL, Sidney J, Appella E, Chesnut RW, Watkins DI, Sette A (2000) Conserved MHC class I peptide binding motif between humans and rhesus macaques. J Immunol 164:283–291PubMedGoogle Scholar
  9. Earley E, Mullen C, Dunyach J, Syka JEP, Compton P, Shabanowitz J, Hunt DF (2010) Implementation of a glow discharge reagent ion source for the introduction of ETD reagent anions into a mass spectrometer. 58th ASMS Conference on Mass SpectrometryGoogle Scholar
  10. Gardner MB, Luciw PA (2008) Macaque models of human infectious disease. ILAR J 49:220–255PubMedCrossRefGoogle Scholar
  11. Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X, Shi W, Bryant SH (2004) Open mass spectrometry search algorithm. J Proteome Res 3:958–964PubMedCrossRefGoogle Scholar
  12. Giraldo-Vela JP, Rudersdorf R, Chung C, Qi Y, Wallace LT, Bimber B, Borchardt GJ, Fisk DL, Glidden CE, Loffredo JT, Piaskowski SM, Furlott JR, Morales-Martinez JP, Wilson NA, Rehrauer WM, Lifson JD, Carrington M, Watkins DI (2008) The major histocompatibility complex class II alleles Mamu-DRB1*1003 and -DRB1*0306 are enriched in a cohort of simian immunodeficiency virus-infected rhesus macaque elite controllers. J Virol 82:859–870PubMedCrossRefGoogle Scholar
  13. Greenbaum J, Sidney J, Chung J, Brander C, Peters B, Sette A (2011) Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics 63:325–335PubMedCrossRefGoogle Scholar
  14. Gulukota K, Sidney J, Sette A, DeLisi C (1997) Two complementary methods for predicting peptides binding major histocompatibility complex molecules. J Mol Biol 267:1258–1267PubMedCrossRefGoogle Scholar
  15. Hickman-Miller HD, Bardet W, Gilb A, Luis AD, Jackson KW, Watkins DI, Hildebrand WH (2005) Rhesus macaque MHC class I molecules present HLA-B-like peptides. J Immunol 175:367–375PubMedGoogle Scholar
  16. Hoof I, Peters B, Sidney J, Pedersen LE, Sette A, Lund O, Buus S, Nielsen M (2009) NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 61:1–13PubMedCrossRefGoogle Scholar
  17. Hu N, D’Souza C, Cheung H, Lang H, Cheuk E, Chamberlain JW (2005) Highly conserved pattern of recognition of influenza A wild-type and variant CD8+ CTL epitopes in HLA-A2+ humans and transgenic HLA-A2+/H2 class I-deficient mice. Vaccine 23:5231–5244PubMedCrossRefGoogle Scholar
  18. Joag SV, Stephens EB, Adams RJ, Foresman L, Narayan O (1994) Pathogenesis of SIVmac infection in Chinese and Indian rhesus macaques: effects of splenectomy on virus burden. Virology 200:436–446PubMedCrossRefGoogle Scholar
  19. Kaizu M, Borchardt G, Glidden C, Fisk D, Loffredo J, Watkins D, Rehrauer W (2007) Molecular typing of major histocompatibility complex class I alleles in the Indian rhesus macaque which restrict SIV CD8+ T cell epitopes. Immunogenetics 59:693–703PubMedCrossRefGoogle Scholar
  20. Kanthaswamy S, Capitanio JP, Dubay CJ, Ferguson B, Folks T, Ha JC, Hotchkiss CE, Johnson ZP, Katze MG, Kean LS, Kubisch HM, Lank S, Lyons LA, Miller GM, Nylander J, O’Connor DH, Palermo RE, Smith DG, Vallender EJ, Wiseman RW, Rogers J (2009a) Resources for genetic management and genomics research on non-human primates at the National Primate Research Centers (NPRCs). J Med Primatol 38(Suppl 1):17–23PubMedCrossRefGoogle Scholar
  21. Kanthaswamy S, Gill L, Satkoski J, Goyal V, Malladi V, Kou A, Basuta K, Sarkisyan L, George D, Smith DG (2009b) Development of a Chinese–Indian hybrid (Chindian) rhesus macaque colony at the California National Primate Research Center by introgression. J Med Primatol 38:86–96PubMedCrossRefGoogle Scholar
  22. Kestler H, Kodama T, Ringler D, Marthas M, Pedersen N, Lackner A, Regier D, Sehgal P, Daniel M, King N et al (1990) Induction of AIDS in rhesus monkeys by molecularly cloned simian immunodeficiency virus. Science 248:1109–1112PubMedCrossRefGoogle Scholar
  23. Kondo A, Sidney J, Southwood S, del Guercio MF, Appella E, Sakamoto H, Grey HM, Celis E, Chesnut RW, Kubo RT, Sette A (1997) Two distinct HLA-A*0101-specific submotifs illustrate alternative peptide binding modes. Immunogenetics 45:249–258PubMedCrossRefGoogle Scholar
  24. Kubo RT, Sette A, Grey HM, Appella E, Sakaguchi K, Zhu NZ, Arnott D, Sherman N, Shabanowitz J, Michel H et al (1994) Definition of specific peptide motifs for four major HLA-A alleles. J Immunol 152:3913–3924PubMedGoogle Scholar
  25. Kuroda MJ, Schmitz JE, Barouch DH, Craiu A, Allen TM, Sette A, Watkins DI, Forman MA, Letvin NL (1998) Analysis of Gag-specific cytotoxic T lymphocytes in simian immunodeficiency virus-infected rhesus monkeys by cell staining with a tetrameric major histocompatibility complex class I-peptide complex. J Exp Med 187:1373–1381PubMedCrossRefGoogle Scholar
  26. Letvin NL, Miller MD, Shen L, Chen ZW, Yasutomi Y (1993) Simian immunodeficiency virus-specific cytotoxic T lymphocytes in rhesus monkeys: characterization and vaccine induction. Semin Immunol 5:215–223PubMedCrossRefGoogle Scholar
  27. Li A, Wang X, Liu Y, Zhao Y, Liu B, Sui L, Zeng L, Sun Z (2012) Preliminary observations of MHC class I A region polymorphism in three populations of Chinese-origin rhesus macaques. Immunogenetics 64:887–894PubMedCrossRefGoogle Scholar
  28. Ling B, Veazey RS, Luckay A, Penedo C, Xu K, Lifson JD, Marx PA (2002) SIV(mac) pathogenesis in rhesus macaques of Chinese and Indian origin compared with primary HIV infections in humans. AIDS 16:1489–1496PubMedCrossRefGoogle Scholar
  29. Loffredo JT, Bean AT, Beal DR, Leon EJ, May GE, Piaskowski SM, Furlott JR, Reed J, Musani SK, Rakasz EG, Friedrich TC, Wilson NA, Allison DB, Watkins DI (2008) Patterns of CD8+ immunodominance may influence the ability of Mamu-B*08-positive macaques to naturally control simian immunodeficiency virus SIVmac239 replication. J Virol 82:1723–1738PubMedCrossRefGoogle Scholar
  30. Loffredo JT, Burwitz BJ, Rakasz EG, Spencer SP, Stephany JJ, Vela JP, Martin SR, Reed J, Piaskowski SM, Furlott J, Weisgrau KL, Rodrigues DS, Soma T, Napoe G, Friedrich TC, Wilson NA, Kallas EG, Watkins DI (2007a) The antiviral efficacy of simian immunodeficiency virus-specific CD8+ T cells is unrelated to epitope specificity and is abrogated by viral escape. J Virol 81:2624–2634PubMedCrossRefGoogle Scholar
  31. Loffredo JT, Friedrich TC, Leon EJ, Stephany JJ, Rodrigues DS, Spencer SP, Bean AT, Beal DR, Burwitz BJ, Rudersdorf RA, Wallace LT, Piaskowski SM, May GE, Sidney J, Gostick E, Wilson NA, Price DA, Kallas EG, Piontkivska H, Hughes AL, Sette A, Watkins DI (2007b) CD8+ T cells from SIV elite controller macaques recognize Mamu-B*08-bound epitopes and select for widespread viral variation. PLoS One 2:e1152PubMedCrossRefGoogle Scholar
  32. Loffredo JT, Maxwell J, Qi Y, Glidden CE, Borchardt GJ, Soma T, Bean AT, Beal DR, Wilson NA, Rehrauer WM, Lifson JD, Carrington M, Watkins DI (2007c) Mamu-B*08-positive macaques control simian immunodeficiency virus replication. J Virol 81:8827–8832PubMedCrossRefGoogle Scholar
  33. Loffredo JT, Sidney J, Bean AT, Beal DR, Bardet W, Wahl A, Hawkins OE, Piaskowski S, Wilson NA, Hildebrand WH, Watkins DI, Sette A (2009) Two MHC class I molecules associated with elite control of immunodeficiency virus replication, Mamu-B*08 and HLA-B*2705, bind peptides with sequence similarity. J Immunol 182:7763–7775PubMedCrossRefGoogle Scholar
  34. Loffredo JT, Sidney J, Piaskowski S, Szymanski A, Furlott J, Rudersdorf R, Reed J, Peters B, Hickman-Miller HD, Bardet W, Rehrauer WM, O’Connor DH, Wilson NA, Hildebrand WH, Sette A, Watkins DI (2005) The high frequency Indian rhesus macaque MHC class I molecule, Mamu-B*01, does not appear to be involved in CD8+ T lymphocyte responses to SIVmac239. J Immunol 175:5986–5997PubMedGoogle Scholar
  35. Loffredo JT, Sidney J, Wojewoda C, Dodds E, Reynolds MR, Napoe G, Mothe BR, O’Connor DH, Wilson NA, Watkins DI, Sette A (2004) Identification of seventeen new simian immunodeficiency virus-derived CD8+ T cell epitopes restricted by the high frequency molecule, Mamu-A*02, and potential escape from CTL recognition. J Immunol 173:5064–5076PubMedGoogle Scholar
  36. Lund O, Nielsen M, Kesmir C, Petersen AG, Lundegaard C, Worning P, Sylvester-Hvid C, Lamberth K, Roder G, Justesen S, Buus S, Brunak S (2004) Definition of supertypes for HLA molecules using clustering of specificity matrices. Immunogenetics 55:797–810PubMedCrossRefGoogle Scholar
  37. Maness NJ, Walsh AD, Rudersdorf RA, Erickson PA, Piaskowski SM, Wilson NA, Watkins DI (2011) Chinese origin rhesus macaque major histocompatibility complex class I molecules promiscuously present epitopes from SIV associated with molecules of Indian origin; implications for immunodominance and viral escape. Immunogenetics 63:587–597PubMedCrossRefGoogle Scholar
  38. Matthews PC, Listgarten J, Carlson JM, Payne R, Huang KH, Frater J, Goedhals D, Steyn D, van Vuuren C, Paioni P, Jooste P, Ogwu A, Shapiro R, Mncube Z, Ndung’u T, Walker BD, Heckerman D, Goulder PJ (2012) Co-operative additive effects between HLA alleles in control of HIV-1. PLoS One 7:e47799PubMedCrossRefGoogle Scholar
  39. McKinney DM, Erickson AL, Walker CM, Thimme R, Chisari FV, Sidney J, Sette A (2000) Identification of five different Patr class I molecules that bind HLA supertype peptides and definition of their peptide binding motifs. J Immunol 165:4414–4422PubMedGoogle Scholar
  40. McMichael AJ, Jones EY (2010) Genetics. First-class control of HIV-1. Science 330:1488–1490PubMedCrossRefGoogle Scholar
  41. Miller CJ, Alexander NJ, Sutjipto S, Lackner AA, Gettie A, Hendrickx AG, Lowenstine LJ, Jennings M, Marx PA (1989) Genital mucosal transmission of simian immunodeficiency virus: animal model for heterosexual transmission of human immunodeficiency virus. J Virol 63:4277–4284PubMedGoogle Scholar
  42. Miller MD, Yamamoto H, Hughes AL, Watkins DI, Letvin NL (1991) Definition of an epitope and MHC class I molecule recognized by gag-specific cytotoxic T lymphocytes in SIVmac-infected rhesus monkeys. J Immunol 147:320–329PubMedGoogle Scholar
  43. Mothe BR, Horton H, Carter DK, Allen TM, Liebl ME, Skinner P, Vogel TU, Fuenger S, Vielhuber K, Rehrauer W, Wilson N, Franchini G, Altman JD, Haase A, Picker LJ, Allison DB, Watkins DI (2002a) Dominance of CD8 responses specific for epitopes bound by a single major histocompatibility complex class I molecule during the acute phase of viral infection. J Virol 76:875–884PubMedCrossRefGoogle Scholar
  44. Mothe BR, Sidney J, Dzuris JL, Liebl ME, Fuenger S, Watkins DI, Sette A (2002b) Characterization of the peptide-binding specificity of Mamu-B*17 and identification of Mamu-B*17-restricted epitopes derived from simian immunodeficiency virus proteins. J Immunol 169:210–219PubMedGoogle Scholar
  45. Mudd PA, Martins MA, Ericsen AJ, Tully DC, Power KA, Bean AT, Piaskowski SM, Duan L, Seese A, Gladden AD, Weisgrau KL, Furlott JR, Kim YI, Veloso de Santana MG, Rakasz E, Capuano S 3rd, Wilson NA, Bonaldo MC, Galler R, Allison DB, Piatak M Jr, Haase AT, Lifson JD, Allen TM, Watkins DI (2012) Vaccine-induced CD8+ T cells control AIDS virus replication. Nature 491:129–133PubMedCrossRefGoogle Scholar
  46. Ouyang D, Xu L, Dai Z, Shi H, Zhang G, Zheng Y, He X (2008) Identification of major histocompatibility complex class I alleles in Chinese rhesus macaques. Acta Biochim Biophys Sin 40:919–927PubMedCrossRefGoogle Scholar
  47. Ouyang DY, Xu LH, Shi HJ, Zheng YT, He XH (2009) Eight novel MHC class I alleles identified in Chinese-origin rhesus macaques. Tissue Antigens 73:285–287PubMedCrossRefGoogle Scholar
  48. Pal R, Venzon D, Letvin NL, Santra S, Montefiori DC, Miller NR, Tryniszewska E, Lewis MG, VanCott TC, Hirsch V, Woodward R, Gibson A, Grace M, Dobratz E, Markham PD, Hel Z, Nacsa J, Klein M, Tartaglia J, Franchini G (2002) ALVAC-SIV-gag-pol-env-based vaccination and macaque major histocompatibility complex class I (A*01) delay simian immunodeficiency virus SIVmac-induced immunodeficiency. J Virol 76:292–302PubMedCrossRefGoogle Scholar
  49. Parham P (2005) MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 5:201–214PubMedCrossRefGoogle Scholar
  50. Pinilla C, Martin R, Gran B, Appel JR, Boggiano C, Wilson DB, Houghten RA (1999) Exploring immunological specificity using synthetic peptide combinatorial libraries. Curr Opin Immunol 11:193–202PubMedCrossRefGoogle Scholar
  51. Reed JS, Sidney J, Piaskowski SM, Glidden CE, Leon EJ, Burwitz BJ, Kolar HL, Eernisse CM, Furlott JR, Maness NJ, Walsh AD, Rudersdorf RA, Bardet W, McMurtrey CP, O’Connor DH, Hildebrand WH, Sette A, Watkins DI, Wilson NA (2011) The role of MHC class I allele Mamu-A*07 during SIV(mac)239 infection. Immunogenetics 63:789–807PubMedCrossRefGoogle Scholar
  52. Robinson J, Waller MJ, Stroehr P, Marsh SGE (2013) IPD—the Immuno Polymorphism Database. Nucleic Acids Res 41:D1234–D1240Google Scholar
  53. Schneidewind A, Brockman MA, Sidney J, Wang YE, Chen H, Suscovich TJ, Li B, Adam RI, Allgaier RL, Mothe BR, Kuntzen T, Oniangue-Ndza C, Trocha A, Yu XG, Brander C, Sette A, Walker BD, Allen TM (2008) Structural and functional constraints limit options for cytotoxic T-lymphocyte escape in the immunodominant HLA-B27-restricted epitope in human immunodeficiency virus type 1 capsid. J Virol 82:5594–5605PubMedCrossRefGoogle Scholar
  54. Sette A, Alexander J, Ruppert J, Snoke K, Franco A, Ishioka G, Grey HM (1994a) Antigen analogs/MHC complexes as specific T cell receptor antagonists. Annu Rev Immunol 12:413–431PubMedCrossRefGoogle Scholar
  55. Sette A, Sidney J (1999) Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics 50:201–212PubMedCrossRefGoogle Scholar
  56. Sette A, Sidney J, Bui HH, Del Guercio MF, Alexander J, Loffredo J, Watkins DI, Mothe BR (2005) Characterization of the peptide-binding specificity of Mamu-A*11 results in the identification of SIV-derived epitopes and interspecies cross-reactivity. Immunogenetics 57:53–68Google Scholar
  57. Sette A, Sidney J, del Guercio MF, Southwood S, Ruppert J, Dahlberg C, Grey HM, Kubo RT (1994b) Peptide binding to the most frequent HLA-A class I alleles measured by quantitative molecular binding assays. Mol Immunol 31:813–822PubMedCrossRefGoogle Scholar
  58. Sette A, Sidney J, Southwood S, Moore C, Berry J, Dow C, Bradley K, Hoof I, Lewis MG, Hildebrand WH, McMurtrey CP, Wilson NA, Watkins DI, Mothe BR (2012) A shared MHC supertype motif emerges by convergent evolution in macaques and mice, but is totally absent in human MHC molecules. ImmunogeneticsGoogle Scholar
  59. Sette A, Vitiello A, Reherman B, Fowler P, Nayersina R, Kast WM, Melief CJ, Oseroff C, Yuan L, Ruppert J et al (1994c) The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Immunol 153:5586–5592PubMedGoogle Scholar
  60. Sette AD, Oseroff C, Sidney J, Alexander J, Chesnut RW, Kakimi K, Guidotti LG, Chisari FV (2001) Overcoming T cell tolerance to the hepatitis B virus surface antigen in hepatitis B virus-transgenic mice. J Immunol 166:1389–1397PubMedGoogle Scholar
  61. Sidney J, Asabe S, Peters B, Purton KA, Chung J, Pencille TJ, Purcell R, Walker CM, Chisari FV, Sette A (2006) Detailed characterization of the peptide binding specificity of five common Patr class I MHC molecules. Immunogenetics 58:559–570PubMedCrossRefGoogle Scholar
  62. Sidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, Peters B (2008) Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res 4:2PubMedCrossRefGoogle Scholar
  63. Sidney J, del Guercio MF, Southwood S, Engelhard VH, Appella E, Rammensee HG, Falk K, Rotzschke O, Takiguchi M, Kubo RT et al (1995) Several HLA alleles share overlapping peptide specificities. J Immunol 154:247–259PubMedGoogle Scholar
  64. Sidney J, Dzuris JL, Newman MJ, Johnson RP, Kaur A, Amitinder K, Walker CM, Appella E, Mothe B, Watkins DI, Sette A (2000) Definition of the Mamu A*01 peptide binding specificity: application to the identification of wild-type and optimized ligands from simian immunodeficiency virus regulatory proteins. J Immunol 165:6387–6399PubMedGoogle Scholar
  65. Sidney J, Grey HM, Southwood S, Celis E, Wentworth PA, del Guercio MF, Kubo RT, Chesnut RW, Sette A (1996) Definition of an HLA-A3-like supermotif demonstrates the overlapping peptide-binding repertoires of common HLA molecules. Hum Immunol 45:79–93PubMedCrossRefGoogle Scholar
  66. Sidney J, Southwood S, Mann DL, Fernandez-Vina MA, Newman MJ, Sette A (2001a) Majority of peptides binding HLA-A*0201 with high affinity crossreact with other A2-supertype molecules. Hum Immunol 62:1200–1216PubMedCrossRefGoogle Scholar
  67. Sidney J, Southwood S, Oseroff C, del Guercio M-F, Sette A, Grey HM (2001b) Measurement of MHC/Peptide Interactions by Gel Filtration. Current Protocols in Immunology. John Wiley & Sons, IncGoogle Scholar
  68. Sidney J, Southwood S, Pasquetto V, Sette A (2003) Simultaneous prediction of binding capacity for multiple molecules of the HLA B44-supertype. J Immunol 171:5964–5974PubMedGoogle Scholar
  69. Sidney J, Southwood S, Sette A (2005) Classification of A1- and A24-supertype molecules by analysis of their MHC-peptide binding repertoires. Immunogenetics 57:393–408PubMedCrossRefGoogle Scholar
  70. Solomon C, Southwood S, Hoof I, Rudersdorf R, Peters B, Sidney J, Pinilla C, Marcondes MC, Ling B, Marx P, Sette A, Mothe BR (2010) The most common Chinese rhesus macaque MHC class I molecule shares peptide binding repertoire with the HLA-B7 supertype. Immunogenetics 62:451–464PubMedCrossRefGoogle Scholar
  71. Southwick CH, Siddiqi MF (1988) Partial recovery and a new population estimate of rhesus monkey populations in India. Am J Primatol 16:187–197CrossRefGoogle Scholar
  72. Southwood S, Solomon C, Hoof I, Rudersdorf R, Sidney J, Peters B, Wahl A, Hawkins O, Hildebrand W, Mothe BR, Sette A (2011) Functional analysis of frequently expressed Chinese rhesus macaque MHC class I molecules Mamu-A1*02601 and Mamu-B*08301 reveals HLA-A2 and HLA-A3 supertypic specificities. Immunogenetics 63:275–290PubMedCrossRefGoogle Scholar
  73. Tsuji J, Nydza R, Wolcott E, Mannor E, Moran B, Hesson G, Arvidson T, Howe K, Hayes R, Ramirez M, Way M (2010) The frequencies of amino acids encoded by genomes that utilize standard and nonstandard genetic codes. Bios 81:22–31CrossRefGoogle Scholar
  74. Udeshi ND, Compton PD, Shabanowitz J, Hunt DF, Rose KL (2008) Methods for analyzing peptides and proteins on a chromatographic timescale by electron-transfer dissociation mass spectrometry. Nat Protoc 3:1709–1717PubMedCrossRefGoogle Scholar
  75. van der Most RG, Murali-Krishna K, Whitton JL, Oseroff C, Alexander J, Southwood S, Sidney J, Chesnut RW, Sette A, Ahmed R (1998) Identification of Db- and Kb-restricted subdominant cytotoxic T-cell responses in lymphocytic choriomeningitis virus-infected mice. Virology 240:158–167PubMedCrossRefGoogle Scholar
  76. Vitiello A, Yuan L, Chesnut RW, Sidney J, Southwood S, Farness P, Jackson MR, Peterson PA, Sette A (1996) Immunodominance analysis of CTL responses to influenza PR8 virus reveals two new dominant and subdominant Kb-restricted epitopes. J Immunol 157:5555–5562PubMedGoogle Scholar
  77. Wambua D, Henderson R, Solomon C, Hunter M, Marx P, Sette A, Mothe BR (2011) SIV-infected Chinese-origin rhesus macaques express specific MHC class I alleles in either elite controllers or normal progressors. J Med Primatol 40:244–247PubMedCrossRefGoogle Scholar
  78. Wiseman RW, Karl JA, Bimber BN, O’Leary CE, Lank SM, Tuscher JJ, Detmer AM, Bouffard P, Levenkova N, Turcotte CL, Szekeres E Jr, Wright C, Harkins T, O’Connor DH (2009) Major histocompatibility complex genotyping with massively parallel pyrosequencing. Nat Med 15:1322–1326PubMedCrossRefGoogle Scholar
  79. Xia HJ, Zhang GH, Ma JP, Dai ZX, Li SY, Han JB, Zheng YT (2010) Dendritic cell subsets dynamics and cytokine production in SIVmac239-infected Chinese rhesus macaques. Retrovirology 7:102PubMedCrossRefGoogle Scholar
  80. Zhang Q, Wang P, Kim Y, Haste-Andersen P, Beaver J, Bourne PE, Bui HH, Buus S, Frankild S, Greenbaum J, Lund O, Lundegaard C, Nielsen M, Ponomarenko J, Sette A, Zhu Z, Peters B (2008) Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res 36:W513–W518PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bianca R. Mothé
    • 1
    • 2
  • Scott Southwood
    • 1
  • John Sidney
    • 1
  • A. Michelle English
    • 3
  • Amanda Wriston
    • 3
  • Ilka Hoof
    • 4
    • 5
  • Jeffrey Shabanowitz
    • 3
  • Donald F. Hunt
    • 3
  • Alessandro Sette
    • 1
  1. 1.Department of Vaccine DiscoveryLa Jolla Institute for Allergy and ImmunologyLa JollaUSA
  2. 2.Department of Biological SciencesCalifornia State University San MarcosSan MarcosUSA
  3. 3.Department of ChemistryUniversity of VirginiaCharlottesvilleUSA
  4. 4.Center for Biological Sequence Analysis, Department of Systems BiologyTechnical University of DenmarkLyngbyDenmark
  5. 5.The Bioinformatics Centre, Department of Biology and The Biotech Research and Innovation CentreCopenhagen UniversityCopenhagenDenmark

Personalised recommendations