Immunogenetics

, Volume 65, Issue 5, pp 357–370 | Cite as

A strategy to determine HLA class II restriction broadly covering the DR, DP, and DQ allelic variants most commonly expressed in the general population

  • Denise M. McKinney
  • Scott Southwood
  • Denise Hinz
  • Carla Oseroff
  • Cecilia S. Lindestam Arlehamn
  • Veronique Schulten
  • Randy Taplitz
  • David Broide
  • Willem A. Hanekom
  • Thomas J. Scriba
  • Robert Wood
  • Rafeul Alam
  • Bjoern Peters
  • John Sidney
  • Alessandro Sette
Original Paper

Abstract

Classic ways to determine MHC restriction involve inhibition with locus-specific antibodies and antigen presentation assays with panels of cell lines matched or mismatched at the various loci of interest. However, these determinations are often complicated by T cell epitope degeneracy and promiscuity. We describe a selection of 46 HLA DR, DQ, and DP specificities that provide worldwide population (phenotypic) coverage of almost 90 % at each locus, and account for over 66 % of all genes at each locus. This panel afforded coverage of at least four HLA class II alleles in over 95 % of the individuals in four study populations of diverse ethnicity from the USA and South Africa. Next, a panel of single HLA class II-transfected cell lines, corresponding to these 46 allelic variants was assembled, consisting of lines previously developed and 15 novel lines generated for the present study. The novel lines were validated by assessing their HLA class II expression by FACS analysis, the in vitro peptide binding activity of HLA molecules purified from the cell lines, and their antigen presenting capacity to T cell lines of known restriction. We also show that these HLA class II-transfected cell lines can be used to rapidly and unambiguously determine HLA restriction of epitopes recognized by an individual donor in a single experiment. This panel of lines will enable high throughput determination of HLA restriction, enabling better characterization of HLA class II-restricted T cell responses and facilitating the development of HLA tetrameric staining reagents.

Keywords

HLA Class II Restriction Transfectants Epitopes Population coverage Polymorphism 

Notes

Acknowledgments

We thank Victoria Tripple, Duy Le, and Ryan Henderson for the technical assistance. We thank Dr. Robert Karr for providing us with a large panel of single transfected HLA class II cell lines, and Dr. Karr and Dr. Howard Grey for their helpful comments. This work was supported by National Institutes of Health contract no. N01-AI-900044C, AI-900048C, AI-100275 (to A.S.) and Bill and Melinda Gates Foundation grant OPP1021972-3 (to W.H.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Allergy and Infectious Diseases or the National Institutes of Health.

Supplementary material

251_2013_684_MOESM1_ESM.pdf (240 kb)
ESM 1(PDF 239 kb)

References

  1. Alcaide-Loridan C, Lennon AM, Bono MR, Barbouche R, Dellagi K, Fellous M (1999) Differential expression of MHC class II isotype chains. Microbes Infect/Inst Pasteur 1(11):929–934CrossRefGoogle Scholar
  2. Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76. doi:10.1146/annurev.bioeng.7.060804.100432 PubMedCrossRefGoogle Scholar
  3. Arlehamn CS, Gerasimova A, Mele F, Henderson R, Swann J, Greenbaum JA, Kim Y, Sidney J, James EA, Taplitz R, McKinney DM, Kwok WW, Grey H, Sallusto F, Peters B, Sette A (2013) Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset. PLoS Pathog 9(1):e1003130. doi:10.1371/journal.ppat.1003130
  4. Arlehamn CS, Sidney J, Henderson R, Greenbaum JA, James EA, Moutaftsi M, Coler R, McKinney DM, Park D, Taplitz R, Kwok WW, Grey H, Peters B, Sette A (2012b) Dissecting mechanisms of immunodominance to the common tuberculosis antigens ESAT-6, CFP10, Rv2031c (hspX), Rv2654c (TB7.7), and Rv1038c (EsxJ). J Immunol 188(10):5020–5031. doi:10.4049/jimmunol.1103556 PubMedCrossRefGoogle Scholar
  5. Austin P, Trowsdale J, Rudd C, Bodmer W, Feldmann M, Lamb J (1985) Functional expression of HLA-DP genes transfected into mouse fibroblasts. Nature 313(5997):61–64PubMedCrossRefGoogle Scholar
  6. Busch R, Strang G, Howland K, Rothbard JB (1990) Degenerate binding of immunogenic peptides to HLA-DR proteins on B cell surfaces. Int Immunol 2(5):443–451PubMedCrossRefGoogle Scholar
  7. Calman AF, Peterlin BM (1988) Evidence for a trans-acting factor that regulates the transcription of class II major histocompatibility complex genes: genetic and functional analysis. Proc Natl Acad Sci U S A 85(23):8830–8834PubMedCrossRefGoogle Scholar
  8. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22(23):3099–3108PubMedCrossRefGoogle Scholar
  9. Constantin CM, Bonney EE, Altman JD, Strickland OL (2002) Major histocompatibility complex (MHC) tetramer technology: an evaluation. Biol Res Nurs 4(2):115–127PubMedCrossRefGoogle Scholar
  10. Doherty DG, Penzotti JE, Koelle DM, Kwok WW, Lybrand TP, Masewicz S, Nepom GT (1998) Structural basis of specificity and degeneracy of T cell recognition: pluriallelic restriction of T cell responses to a peptide antigen involves both specific and promiscuous interactions between the T cell receptor, peptide, and HLA-DR. J Immunol 161(7):3527–3535PubMedGoogle Scholar
  11. Dzuris JL, Sidney J, Horton H, Correa R, Carter D, Chesnut RW, Watkins DI, Sette A (2001) Molecular determinants of peptide binding to two common rhesus macaque major histocompatibility complex class II molecules. J Virol 75(22):10958–10968PubMedCrossRefGoogle Scholar
  12. Edwards JA, Durant BM, Jones DB, Evans PR, Smith JL (1986) Differential expression of HLA class II antigens in fetal human spleen: relationship of HLA-DP, DQ, and DR to immunoglobulin expression. J Immunol 137(2):490–497PubMedGoogle Scholar
  13. Giraldo-Vela JP, Rudersdorf R, Chung C, Qi Y, Wallace LT, Bimber B, Borchardt GJ, Fisk DL, Glidden CE, Loffredo JT, Piaskowski SM, Furlott JR, Morales-Martinez JP, Wilson NA, Rehrauer WM, Lifson JD, Carrington M, Watkins DI (2008) The major histocompatibility complex class II alleles Mamu-DRB1*1003 and -DRB1*0306 are enriched in a cohort of simian immunodeficiency virus-infected rhesus macaque elite controllers. J Virol 82(2):859–870. doi:10.1128/JVI.01816-07 PubMedCrossRefGoogle Scholar
  14. Greenbaum J, Sidney J, Chung J, Brander C, Peters B, Sette A (2011) Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics 63(6):325–335. doi:10.1007/s00251-011-0513-0 PubMedCrossRefGoogle Scholar
  15. Guardiola J, Maffei A (1993) Control of MHC class II gene expression in autoimmune, infectious, and neoplastic diseases. Crit Rev Immunol 13(3–4):247–268PubMedGoogle Scholar
  16. Gulukota K, Sidney J, Sette A, DeLisi C (1997) Two complementary methods for predicting peptides binding major histocompatibility complex molecules. J Mol Biol 267(5):1258–1267PubMedCrossRefGoogle Scholar
  17. Hauber I, Gulle H, Wolf HM, Maris M, Eggenbauer H, Eibl MM (1995) Molecular characterization of major histocompatibility complex class II gene expression and demonstration of antigen-specific T cell response indicate a new phenotype in class II-deficient patients. J Exp Med 181(4):1411–1423PubMedCrossRefGoogle Scholar
  18. Ho PC, Mutch DA, Winkel KD, Saul AJ, Jones GL, Doran TJ, Rzepczyk CM (1990) Identification of two promiscuous T cell epitopes from tetanus toxin. Eur J Immunol 20(3):477–483. doi:10.1002/eji.1830200304 PubMedCrossRefGoogle Scholar
  19. Jacobson S, Sekaly RP, Jacobson CL, McFarland HF, Long EO (1989) HLA class II-restricted presentation of cytoplasmic measles virus antigens to cytotoxic T cells. J Virol 63(4):1756–1762PubMedGoogle Scholar
  20. James EA, Bui J, Berger D, Huston L, Roti M, Kwok WW (2007) Tetramer-guided epitope mapping reveals broad, individualized repertoires of tetanus toxin-specific CD4+ T cells and suggests HLA-based differences in epitope recognition. Int Immunol 19(11):1291–1301. doi:10.1093/intimm/dxm099 PubMedCrossRefGoogle Scholar
  21. Jaraquemada D, Martin R, Rosen-Bronson S, Flerlage M, McFarland HF, Long EO (1990) HLA-DR2a is the dominant restriction molecule for the cytotoxic T cell response to myelin basic protein in DR2Dw2 individuals. J Immunol 145(9):2880–2885PubMedGoogle Scholar
  22. Karr RW, Panina-Bordignon P, Yu WY, Lanzavecchia A (1991) Antigen-specific T cells with monogamous or promiscuous restriction patterns are sensitive to different HLA-DR beta chain substitutions. J Immunol 146(12):4242–4247PubMedGoogle Scholar
  23. Klohe EP, Watts R, Bahl M, Alber C, Yu WY, Anderson R, Silver J, Gregersen PK, Karr RW (1988) Analysis of the molecular specificities of anti-class II monoclonal antibodies by using L cell transfectants expressing HLA class II molecules. J Immunol 141(6):2158–2164PubMedGoogle Scholar
  24. Kotturi MF, Scott I, Wolfe T, Peters B, Sidney J, Cheroutre H, von Herrath MG, Buchmeier MJ, Grey H, Sette A (2008) Naive precursor frequencies and MHC binding rather than the degree of epitope diversity shape CD8+ T cell immunodominance. J Immunol 181(3):2124–2133. doi:181/3/2124 PubMedGoogle Scholar
  25. Krieger JI, Karr RW, Grey HM, Yu WY, O'Sullivan D, Batovsky L, Zheng ZL, Colon SM, Gaeta FC, Sidney J et al (1991) Single amino acid changes in DR and antigen define residues critical for peptide-MHC binding and T cell recognition. J Immunol 146(7):2331–2340PubMedGoogle Scholar
  26. Kwok WW (2003) Challenges in staining T cells using HLA class II tetramers. Clin Immunol 106(1):23–28PubMedCrossRefGoogle Scholar
  27. Lair B, Alber C, Yu WY, Watts R, Bahl M, Karr RW (1988) A newly characterized HLA-DP beta-chain allele. Evidence for DP beta heterogeneity within the DPw4 specificity. J Immunol 141(4):1353–1357PubMedGoogle Scholar
  28. Larche M (2008) Determining MHC restriction of T-cell responses. Methods Mol Med 138:57–72. doi:10.1007/978-1-59745-366-0_6 PubMedCrossRefGoogle Scholar
  29. Lechler RI, Bal V, Rothbard JB, Germain RN, Sekaly R, Long EO, Lamb J (1988) Structural and functional studies of HLA-DR restricted antigen recognition by human helper T lymphocyte clones by using transfected murine cell lines. J Immunol 141(9):3003–3009PubMedGoogle Scholar
  30. Marsh SGE, Parham P, Barber LD (2000) The HLA FactsBook. Academic Press, LondonGoogle Scholar
  31. Maurer DH, Hanke JH, Mickelson E, Rich RR, Pollack MS (1987) Differential presentation of HLA-DR, DQ, and DP restriction elements by interferon-gamma-treated dermal fibroblasts. J Immunol 139(3):715–723PubMedGoogle Scholar
  32. Meyer D, Singe R, Mack S, Lancaster A, Nelson M, Erlich H, Frenandez-Vina M, Thomson G (2007) Single Locus Polymorphism of Classical HLA Genes. Immunobiology of the Human MHC: Proceedings of the 13th International Histocompatibility Workshop and Conference; Seattle, WA:653–704Google Scholar
  33. Middleton D, Menchaca L, Rood H, Komerofsky R (2003) New allele frequency database. Tissue Antigens 61(5):403–407, http://www.allelefrequencies.net PubMedCrossRefGoogle Scholar
  34. Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC, Kedl RM, Jenkins MK (2007) Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27(2):203–213. doi:10.1016/j.immuni.2007.07.007 PubMedCrossRefGoogle Scholar
  35. Moon JJ, Chu HH, Hataye J, Pagan AJ, Pepper M, McLachlan JB, Zell T, Jenkins MK (2009) Tracking epitope-specific T cells. Nat Protoc 4(4):565–581. doi:10.1038/nprot.2009.9 PubMedCrossRefGoogle Scholar
  36. Nakatsuji T, Inoko H, Ando A, Sato T, Koide Y, Tadakuma T, Yoshida TO, Tsuji K (1987) The role of transfected HLA-DQ genes in the mixed lymphocyte reaction-like condition. Immunogenetics 25(1):1–6PubMedCrossRefGoogle Scholar
  37. Nepom GT (2012) MHC class II tetramers. J Immunol 188(6):2477–2482. doi:10.4049/jimmunol.1102398 PubMedCrossRefGoogle Scholar
  38. Nepom GT, Buckner JH, Novak EJ, Reichstetter S, Reijonen H, Gebe J, Wang R, Swanson E, Kwok WW (2002) HLA class II tetramers: tools for direct analysis of antigen-specific CD4+ T cells. Arthritis Rheum 46(1):5–12. doi:10.1002/1529-0131(200201)46:1<5::AID-ART10063>3.0.CO;2-SPubMedCrossRefGoogle Scholar
  39. Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM (2012) Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36(1):142–152. doi:10.1016/j.immuni.2012.01.002 PubMedCrossRefGoogle Scholar
  40. Oseroff C, Sidney J, Kotturi MF, Kolla R, Alam R, Broide DH, Wasserman SI, Weiskopf D, McKinney DM, Chung JL, Petersen A, Grey H, Peters B, Sette A (2010) Molecular determinants of T cell epitope recognition to the common Timothy grass allergen. J Immunol 185(2):943–955. doi:10.4049/jimmunol.1000405 PubMedCrossRefGoogle Scholar
  41. Oseroff C, Sidney J, Tripple V, Grey H, Wood R, Broide DH, Greenbaum J, Kolla R, Peters B, Pomes A, Sette A (2012a) Analysis of T Cell responses to the major allergens from German cockroach: epitope specificity and relationship to IgE production. J Immunol 189(2):679–688. doi:10.4049/jimmunol.1200694 PubMedCrossRefGoogle Scholar
  42. Oseroff C, Sidney J, Vita R, Tripple V, McKinney DM, Southwood S, Brodie TM, Sallusto F, Grey H, Alam R, Broide D, Greenbaum JA, Kolla R, Peters B, Sette A (2012b) T Cell Responses to known allergen proteins are differently polarized and account for a variable fraction of total response to allergen extracts. J Immunol. doi:10.4049/jimmunol.1200850
  43. O'Sullivan D, Sidney J, Appella E, Walker L, Phillips L, Colon SM, Miles C, Chesnut RW, Sette A (1990) Characterization of the specificity of peptide binding to four DR haplotypes. J Immunol 145(6):1799–1808PubMedGoogle Scholar
  44. O'Sullivan D, Arrhenius T, Sidney J, Del Guercio MF, Albertson M, Wall M, Oseroff C, Southwood S, Colon SM, Gaeta FC et al (1991) On the interaction of promiscuous antigenic peptides with different DR alleles. Identification of common structural motifs. J Immunol 147(8):2663–2669PubMedGoogle Scholar
  45. Panina-Bordignon P, Demotz S, Corradin G, Lanzavecchia A (1989a) Study on the immunogenicity of human class-II-restricted T-cell epitopes: processing constraints, degenerate binding, and promiscuous recognition. Cold Spring Harb Symp Quant Biol 54(Pt 1):445–451PubMedCrossRefGoogle Scholar
  46. Panina-Bordignon P, Tan A, Termijtelen A, Demotz S, Corradin G, Lanzavecchia A (1989b) Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur J Immunol 19(12):2237–2242PubMedCrossRefGoogle Scholar
  47. Peretti M, Villard J, Barras E, Zufferey M, Reith W (2001) Expression of the three human major histocompatibility complex class II isotypes exhibits a differential dependence on the transcription factor RFXAP. Mol Cell Biol 21(17):5699–5709PubMedCrossRefGoogle Scholar
  48. Robinson J, Malik A, Parham P, Bodmer JG, Marsh SG (2000) IMGT/HLA database–a sequence database for the human major histocompatibility complex. Tissue Antigens 55(3):280–287PubMedCrossRefGoogle Scholar
  49. Robinson J, Waller MJ, Parham P, de Groot N, Bontrop R, Kennedy LJ, Stoehr P, Marsh SG (2003) IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res 31(1):311–314PubMedCrossRefGoogle Scholar
  50. Robinson J, Mistry K, McWilliam H, Lopez R, Parham P, Marsh SG (2011) The IMGT/HLA database. Nucleic Acids Res 39(Database issue):D1171–D1176. doi:10.1093/nar/gkq998 PubMedCrossRefGoogle Scholar
  51. Roche PA, Cresswell P (1990) High-affinity binding of an influenza hemagglutinin-derived peptide to purified HLA-DR. J Immunol 144(5):1849–1856PubMedGoogle Scholar
  52. Sekaly RP, Jacobson S, Richert JR, Tonnelle C, McFarland HF, Long EO (1988) Antigen presentation to HLA class II-restricted measles virus-specific T-cell clones can occur in the absence of the invariant chain. Proc Natl Acad Sci U S A 85(4):1209–1212PubMedCrossRefGoogle Scholar
  53. Sidney J, Southwood S, Oseroff C, del Guercio MF, Sette A, Grey HM (2001) Measurement of MHC/peptide interactions by gel filtration. Curr Protoc Immunol Chapter 18:Unit 18 13. doi:10.1002/0471142735.im1803s31
  54. Sidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, Peters B (2008) Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res 4:2. doi:10.1186/1745-7580-4-2 PubMedCrossRefGoogle Scholar
  55. Sidney J, Steen A, Moore C, Ngo S, Chung J, Peters B, Sette A (2010a) Divergent motifs but overlapping binding repertoires of six HLA-DQ molecules frequently expressed in the worldwide human population. J Immunol 185(7):4189–4198. doi:10.4049/jimmunol.1001006 PubMedCrossRefGoogle Scholar
  56. Sidney J, Steen A, Moore C, Ngo S, Chung J, Peters B, Sette A (2010b) Five HLA-DP molecules frequently expressed in the worldwide human population share a common HLA supertypic binding specificity. J Immunol 184(5):2492–2503. doi:10.4049/jimmunol.0903655 PubMedCrossRefGoogle Scholar
  57. Sinigaglia F, Guttinger M, Kilgus J, Doran DM, Matile H, Etlinger H, Trzeciak A, Gillessen D, Pink JR (1988) A malaria T-cell epitope recognized in association with most mouse and human MHC class II molecules. Nature 336(6201):778–780PubMedCrossRefGoogle Scholar
  58. Solomon C, Southwood S, Hoof I, Rudersdorf R, Peters B, Sidney J, Pinilla C, Marcondes MC, Ling B, Marx P, Sette A, Mothe BR (2010) The most common Chinese rhesus macaque MHC class I molecule shares peptide binding repertoire with the HLA-B7 supertype. Immunogenetics 62(7):451–464. doi:10.1007/s00251-010-0450-3 PubMedCrossRefGoogle Scholar
  59. Southwood S, Sidney J, Kondo A, del Guercio MF, Appella E, Hoffman S, Kubo RT, Chesnut RW, Grey HM, Sette A (1998) Several common HLA-DR types share largely overlapping peptide binding repertoires. J Immunol 160(7):3363–3373PubMedGoogle Scholar
  60. Tishkoff SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A, Froment A, Hirbo JB, Awomoyi AA, Bodo JM, Doumbo O, Ibrahim M, Juma AT, Kotze MJ, Lema G, Moore JH, Mortensen H, Nyambo TB, Omar SA, Powell K, Pretorius GS, Smith MW, Thera MA, Wambebe C, Weber JL, Williams SM (2009) The genetic structure and history of Africans and African Americans. Science 324(5930):1035–1044. doi:10.1126/science.1172257 PubMedCrossRefGoogle Scholar
  61. Vita R, Zarebski L, Greenbaum JA, Emami H, Hoof I, Salimi N, Damle R, Sette A, Peters B (2010) The immune epitope database 2.0. Nucleic Acids Res 38(Database issue):D854–D862. doi:10.1093/nar/gkp1004 PubMedCrossRefGoogle Scholar
  62. Wang RF (2009) Molecular cloning and characterization of MHC class I- and II-restricted tumor antigens recognized by T cells. In: Coligan JE, et al. (eds) Current protocols in immunology. doi:10.1002/0471142735.im2010s84
  63. Wang P, Sidney J, Dow C, Mothe B, Sette A, Peters B (2008) A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 4(4):e1000048. doi:10.1371/journal.pcbi.1000048 PubMedCrossRefGoogle Scholar
  64. Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, Peters B (2010) Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinforma 11:568. doi:10.1186/1471-2105-11-568 CrossRefGoogle Scholar
  65. Wilson CC, Palmer B, Southwood S, Sidney J, Higashimoto Y, Appella E, Chesnut R, Sette A, Livingston BD (2001) Identification and antigenicity of broadly cross-reactive and conserved human immunodeficiency virus type 1-derived helper T-lymphocyte epitopes. J Virol 75(9):4195–4207. doi:10.1128/jvi.75.9.4195-4207.2001 PubMedCrossRefGoogle Scholar
  66. Yang J, James EA, Huston L, Danke NA, Liu AW, Kwok WW (2006) Multiplex mapping of CD4 T cell epitopes using class II tetramers. Clin Immunol 120(1):21–32. doi:10.1016/j.clim.2006.03.008 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Denise M. McKinney
    • 1
  • Scott Southwood
    • 1
  • Denise Hinz
    • 1
  • Carla Oseroff
    • 1
  • Cecilia S. Lindestam Arlehamn
    • 1
  • Veronique Schulten
    • 1
  • Randy Taplitz
    • 2
  • David Broide
    • 2
  • Willem A. Hanekom
    • 3
  • Thomas J. Scriba
    • 3
  • Robert Wood
    • 4
  • Rafeul Alam
    • 5
  • Bjoern Peters
    • 1
  • John Sidney
    • 1
  • Alessandro Sette
    • 1
  1. 1.La Jolla Institute for Allergy and ImmunologySan DiegoUSA
  2. 2.University of CaliforniaSan DiegoUSA
  3. 3.South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
  4. 4.The Johns Hopkins UniversityBaltimoreUSA
  5. 5.National Jewish HealthDenverUSA

Personalised recommendations