, Volume 65, Issue 2, pp 145–156

R4 regulators of G protein signaling (RGS) identify an ancient MHC-linked synteny group

  • Jaanus Suurväli
  • Jacques Robert
  • Pierre Boudinot
  • Sirje Rüütel Boudinot
Original Paper


Regulators of G protein signaling (RGS) are key regulators of G protein signaling. RGS proteins of the R4 RGS group are composed of a mere RGS domain and are mainly involved in immune response modulation. In both human and mouse, most genes encoding the R4 RGS proteins are located in the same region of chromosome 1. We show here that the RGS1/RGS16 neighborhood constitutes a synteny group well conserved across tetrapods and closely linked to the MHC paralogon of chromosome 1. Genes located in the RGS1/RGS16 region have paralogs close to the MHC on chromosome 6 or close to the other MHC paralogons. In amphioxus, a cephalochordate, these genes possess orthologs that are located in the same scaffolds as a number of markers defining the proto-MHC in this species (Abi-Rached et al., Nat Genet 31:100–115, 2002). We therefore propose that the RGS1/RGS16 region provides useful markers to investigate the origins and the evolution of the MHC. In addition, we show that some genes of the region appear to have immune functions not only in human, but also in Xenopus.


Regulators of G protein signaling Tetrapod evolution Branchiostoma floridae Proto-MHC Xenopus tropicalis 

Supplementary material

251_2012_661_MOESM1_ESM.pdf (1.4 mb)
ESM 1(PDF 1398 kb)
251_2012_661_MOESM2_ESM.pdf (2.4 mb)
ESM 2(PDF 2499 kb)
251_2012_661_MOESM3_ESM.pdf (3.1 mb)
ESM 3(PDF 3221 kb)
251_2012_661_MOESM4_ESM.pdf (257 kb)
ESM 4(PDF 256 kb)


  1. Abi-Rached L, Gilles A, Shiina T, Pontarotti P, Inoko H (2002) Evidence of en bloc duplication in vertebrate genomes. Nat Genet 31:100–105PubMedCrossRefGoogle Scholar
  2. Anantharaman V, Abhiman S, de Souza RF, Aravind L (2011) Comparative genomics uncovers novel structural and functional features of the heterotrimeric GTPase signaling system. Gene 475:63–78PubMedCrossRefGoogle Scholar
  3. Bansal G, Druey KM, Xie Z (2007) R4 RGS proteins: regulation of G-protein signaling and beyond. Pharmacol Ther 116:473–495PubMedCrossRefGoogle Scholar
  4. Beck S, Geraghty D, Inoko H, Rowen L (1999) Complete sequence and gene map of a human major histocompatibility complex. Nature 401:921–923CrossRefGoogle Scholar
  5. Boratyn GM, Schäffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL (2012) Domain enhanced lookup time accelerated BLAST. Biol Direct 7:12PubMedCrossRefGoogle Scholar
  6. Burt DW (2002) Origin and evolution of avian microchromosomes. Cytogenet Genome Res 96:97–112PubMedCrossRefGoogle Scholar
  7. Cahir-McFarland ED, Carter K, Rosenwald A, Giltnane JM, Henrickson SE, Staudt LM, Kieff E (2004) Role of NF-kappa B in cell survival and transcription of latent membrane protein 1-expressing or Epstein–Barr virus latency III-infected cells. J Virol 78:4108–4119PubMedCrossRefGoogle Scholar
  8. Castro LF, Furlong RF, Holland PW (2004) An antecedent of the MHC-linked genomic region in amphioxus. Immunogenetics 55:782–784PubMedCrossRefGoogle Scholar
  9. Chen G, Robert J (2011) Antiviral immunity in amphibians. Viruses 3:2065–2086PubMedCrossRefGoogle Scholar
  10. Chen G, Ward BM, Yu KH, Chinchar VG, Robert J (2011) Improved knockout methodology reveals that frog virus 3 mutants lacking either the 18K immediate-early gene or the truncated vIF-2alpha gene are defective for replication and growth in vivo. J Virol 85:11131–11138PubMedCrossRefGoogle Scholar
  11. Danchin EG, Pontarotti P (2004) Towards the reconstruction of the bilaterian ancestral pre-MHC region. Trends Genet 20:587–591PubMedCrossRefGoogle Scholar
  12. Danchin E, Vitiello V, Vienne A, Richard O, Gouret P, McDermott MF, Pontarotti P (2004) The major histocompatibility complex origin. Immunol Rev 198:216–232PubMedCrossRefGoogle Scholar
  13. De Jesús Andino F, Chen G, Li Z, Grayfer L, Robert J (2012) Susceptibility of Xenopus laevis tadpoles to infection by the ranavirus Frog-Virus 3 correlates with a reduced and delayed innate immune response in comparison with adult frogs. Virology 432:435–443PubMedCrossRefGoogle Scholar
  14. Engström PG, Ho Sui SJ, Drivenes O, Becker TS, Lenhard B (2007) Genomic regulatory blocks underlie extensive microsynteny conservation in insects. Genome Res 17:1898–1908PubMedCrossRefGoogle Scholar
  15. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  16. Flajnik MF, Du Pasquier L (2008) Evolution of the immune system. In: Paul WE (ed) Fundamental immunology, 6th edn. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, pp 56–124Google Scholar
  17. Flajnik MF, Kasahara M (2001) Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 15:351–362PubMedCrossRefGoogle Scholar
  18. Flajnik MF, Kasahara M (2010) Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 11:47–59PubMedCrossRefGoogle Scholar
  19. Flajnik MF, Tlapakova T, Criscitiello MF, Krylov V, Ohta Y (2012) Evolution of the B7 family: co-evolution of B7H6 and NKp30, identification of a new B7 family member, B7H7, and of B7’s historical relationship with the MHC. Immunogenetics 64:571–590PubMedCrossRefGoogle Scholar
  20. Giorelli M, Livrea P, Defazio G, Iacovelli L, Capobianco L, Picascia A, Sallese M, Martino D, Aniello MS, Trojano M, De Blasi A (2002) Interferon beta-1a counteracts effects of activation on the expression of G-protein-coupled receptor kinases 2 and 3, beta-arrestin-1, and regulators of G-protein signalling 2 and 16 in human mononuclear leukocytes. Cell Signal 14:673–678PubMedCrossRefGoogle Scholar
  21. Gouret P, Vitiello V, Balandraud N, Gilles A, Pontarotti P, Danchin EG (2005) FIGENIX: intelligent automation of genomic annotation: expertise integration in a new software platform. BMC Bioinforma 6:198CrossRefGoogle Scholar
  22. Grayfer L, Andino Fde J, Chen G, Chinchar GV, Robert J (2012) Immune evasion strategies of ranaviruses and innate immune responses to these emerging pathogens. Viruses 4:1075–1092PubMedCrossRefGoogle Scholar
  23. Hallböök F, Wilson K, Thorndyke M, Olinski RP (2006) Formation and evolution of the chordate neurotrophin and Trk receptor genes. Brain Behav Evol 68:133–144PubMedCrossRefGoogle Scholar
  24. Holland LZ, Abi-Rached L, Tamme R, Holland ND, Kortschak D, Inoko H, Shiina T, Burgtorf C, Lardelli M (2001) Characterization and developmental expression of the amphioxus homolog of Notch (AmphiNotch): evolutionary conservation of multiple expression domains in amphioxus and vertebrates. Dev Biol 232:293–507CrossRefGoogle Scholar
  25. Huerta-Cepas J, Capella-Gutierrez S, Pryszcz LP, Denisov I, Kormes D, Marcet-Houben M, Gabaldón T (2011) PhylomeDB v3.0: an expanding repository of genome-wide collections of trees, alignments and phylogeny-based orthology and paralogy predictions. Nucleic Acid Res 39:D556–D560PubMedCrossRefGoogle Scholar
  26. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282PubMedGoogle Scholar
  27. Kasahara M (1999) The chromosomal duplication model of the major histocompatibility complex. Immunol Rev 167:17–32PubMedCrossRefGoogle Scholar
  28. Kasahara M, Hayashi M, Tanaka K, Inoko H, Sugaya K, Ikemura T, Ishibashi T (1996) Chromosomal localization of the proteasome Z subunit gene reveals an ancient chromosomal duplication involving the major histocompatibility complex. Proc Natl Acad Sci U S A 93:9096–9101PubMedCrossRefGoogle Scholar
  29. Kasahara M, Suzuki T, Du Pasquier L (2004) On the origins of the adaptive immune system: novel insights from invertebrates and cold-blooded vertebrates. Trends Immunol 25:105–111PubMedCrossRefGoogle Scholar
  30. Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin-I T, Takeda H, Morishita S, Kohara Y (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447:714–719PubMedCrossRefGoogle Scholar
  31. Katsanis N, Fitzgibbon J, Fisher EM (1996) Paralogy mapping: identification of a region in the human MHC triplicated onto human chromosomes 1 and 9 allows the prediction and isolation of novel PBX and NOTCH loci. Genomics 35:101–108PubMedCrossRefGoogle Scholar
  32. Kim DH, Lim JJ, Lee JJ, Kim DG, Lee HJ, Min W, Kim KD, Chang HH, Endale M, Rhee MH, Watarai M, Kim S (2012) RGS2-mediated intracellular Ca2+ level plays a key role in the intracellular replication of Brucella abortus within phagocytes. J Infect Dis 205:445–452PubMedCrossRefGoogle Scholar
  33. Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New YorkGoogle Scholar
  34. Lee HK, Yeo S, Kim JS, Lee JG, Bae YS, Lee C, Baek SH (2010) Protein kinase C-eta and phospholipase D2 pathway regulates foam cell formation via regulator of G protein signaling 2. Mol Pharmacol 78:478–485PubMedCrossRefGoogle Scholar
  35. Morales HD, Robert J (2007) Characterization of primary and memory CD8 T-cell responses against ranavirus (FV3) in Xenopus laevis. J Virol 81:2240–2248PubMedCrossRefGoogle Scholar
  36. Muffato M, Louis A, Poisnel CE, Roest Crollius H (2010) Genomicus: a database and a browser to study gene synteny in modern and ancestral genomes. Bioinformatics 26:1119–1121PubMedCrossRefGoogle Scholar
  37. Nakatani Y, Takeda H, Kohara Y, Morishita S (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17:1254–1265PubMedCrossRefGoogle Scholar
  38. Ohashi K, Takizawa F, Tokumaru N, Nakayasu C, Toda H, Fischer U, Moritomo T, Hashimoto K, Nakanishi T, Dijkstra JM (2010) A molecule in teleost fish, related with human MHC-encoded G6F, has a cytoplasmic tail with ITAM and marks the surface of thrombocytes and in some fishes also of erythrocytes. Immunogenetics 62:543–559PubMedCrossRefGoogle Scholar
  39. Ohno S (1970) Evolution by gene duplication. Springer, New YorkGoogle Scholar
  40. Paganini J, Gouret P (2012) Reliable phylogenetic trees building: a new web interface for FIGENIX. Evol Bioinform Online 8:417–421PubMedGoogle Scholar
  41. Patten M, Bunemann J, Thoma B, Kramer E, Thoenes M, Stube S, Mittmann C, Wieland T (2002) Endotoxin induces desensitization of cardiac endothelin-1 receptor signaling by increased expression of RGS4 and RGS16. Cardiovasc Res 53:156–164PubMedCrossRefGoogle Scholar
  42. Pertseva MN, Shpakov AO (2009) The prokaryotic origin and evolution of eukaryotic chemosignaling systems. Neurosci Behav Physiol 39:793–804PubMedCrossRefGoogle Scholar
  43. Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutiérrez EL, Dubchak I, Garcia-Fernàndez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PW, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071PubMedCrossRefGoogle Scholar
  44. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120PubMedCrossRefGoogle Scholar
  45. Riekenberg S, Farhat K, Debarry J, Heine H, Jung G, Wiesmuller KH, Ulmer AJ (2009) Regulators of G-protein signalling are modulated by bacterial lipopeptides and lipopolysaccharide. FEBS J 276:649–659PubMedCrossRefGoogle Scholar
  46. Robert J, Morales H, Buck W, Cohen N, Marr S, Gantress J (2005) Adaptive immunity and histopathology in frog virus 3-infected Xenopus. Virology 332:667–675PubMedCrossRefGoogle Scholar
  47. Shi GX, Harrison K, Han SB, Moratz C, Kehrl JH (2004) Toll-like receptor signaling alters the expression of regulator of G protein signaling proteins in dendritic cells: implications for G protein-coupled receptor signaling. J Immunol 172:5175–5184PubMedGoogle Scholar
  48. Siderovski DP, Willard FS (2005) The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int J Biol Sci 1:51–66PubMedCrossRefGoogle Scholar
  49. Sierra DA, Gilbert DJ, Householder D, Grishin NV, Yu K, Ukidwe P, Barker SA, He W, Wensel TG, Otero G, Brown G, Copeland NG, Jenkins NA, Wilkie TM (2002) Evolution of the regulators of G-protein signaling multigene family in mouse and human. Genomics 79:177–185PubMedCrossRefGoogle Scholar
  50. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  51. Timmusk S, Merlot E, Lovgren T, Jarvekulg L, Berg M, Fossum C (2009) Regulator of G protein signalling 16 is a target for a porcine circovirus type 2 protein. J Gen Virol 90:2425–2436PubMedCrossRefGoogle Scholar
  52. Tran T, Paz P, Velichko S, Cifrese J, Belur P, Yamaguchi KD, Ku K, Mirshahpanah P, Reder AT, Croze E (2010) Interferon beta-1b induces the expression of RGS1 a negative regulator of G-protein signaling. Int J Cell Biol 2010:529376PubMedGoogle Scholar
  53. Trowsdale J (2001) Genetic and functional relationships between MHC and NK receptor genes. Immunity 15:363–374PubMedCrossRefGoogle Scholar
  54. Vienne A, Shiina T, Abi-Rached L, Danchin E, Vitiello V, Cartault F, Inoko H, Pontarotti P (2003) Evolution of the proto-MHC ancestral region: more evidence for the plesiomorphic organisation of human chromosome 9q34 region. Immunogenetics 55:429–436PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jaanus Suurväli
    • 1
  • Jacques Robert
    • 2
  • Pierre Boudinot
    • 3
  • Sirje Rüütel Boudinot
    • 1
  1. 1.Department of Gene TechnologyTallinn University of TechnologyTallinnEstonia
  2. 2.Department of Microbiology and ImmunologyUniversity of Rochester Medical CenterRochesterUSA
  3. 3.INRA, Molecular Virology and ImmunologyJouy-en-JosasFrance

Personalised recommendations