, Volume 65, Issue 1, pp 83–90 | Cite as

Influence of Tyrphostin AG490 on the expression of diabetes-associated markers in human adipocytes

  • Abdoreza Davoodi-Semiromi
  • C. H. Wasserfall
  • A. Hassanzadeh
  • R. M. Cooper-DeHoff
  • M. Wabitsch
  • M. Atkinson
Brief Communication


Tyrosine kinase inhibitors (TKi) hold promise as a treatment for a variety of disorders ranging from those in oncology to diseases thought as immune mediated. Tyrphostin AG490 is a potent Jak-Stat TKi shown effective in the prevention of allograft transplant rejection, experimental autoimmune disease, as well as the treatment of cancer. However, given its ability to modulate this important but pleiotropic intracellular pathway, we thought that it is important to examine its effects on glucose metabolism and expression of major transcription factors and adipokines associated with insulin insensitivity and diabetes. We investigated the metabolic effects of AG490 on glucose levels in vivo using an animal model of diabetes, nonobese diabetic (NOD) mice, and transcription factor expression through assessment of human adipocytes. AG490 treatment of young nondiabetic NOD mice significantly reduced blood glucose levels (p = 0.002). In vitro, treatment of adipocytes with rosiglitazone, an insulin sensitizer that binds to peroxisome proliferator-activated receptor (PPAR) receptors and increases the adipocyte response to insulin, significantly increased the expression of the antidiabetic adipokine adiponectin. Importantly, the combination of rosiglitazone plus Tyrphostin AG490 further increased this effect and was specifically associated with significant upregulation of C-enhanced binding protein (C/EBP) (p < 0.0001). In terms of the mechanism underlying this action, regulatory regions of the PPARγ, ADIPOQ, and C/EBP contain the Stat5 DNA-binding sequences and were demonstrated, by gel shift experiments in vitro. These data suggest that blocking Jak-Stat signaling with AG490 reduces blood glucose levels and modulates the expression of transcription factors previously associated with diabetes, thereby supporting its potential as a therapy for this disease.


Adipocytes Diabetes Kinase inhibitor Autoimmunity AG490 Obesity 

Supplementary material

251_2012_659_MOESM1_ESM.docx (15 kb)
ESM 1(DOCX 14 kb)


  1. Augstein P, Dunger A, Heinke P, Wachlin G, Berg S, Hehmke B, Salzsieder E (2003) Prevention of autoimmune diabetes in NOD mice by troglitazone is associated with modulation of ICAM-1 expression on pancreatic islet cells and IFN-gamma expression in splenic T cells. Biochem Biophys Res Commun 304:378–384PubMedCrossRefGoogle Scholar
  2. Baselga J (2006) Targeting tyrosine kinases in cancer: the second wave. Science 312:1175–1178PubMedCrossRefGoogle Scholar
  3. Baugh JE Jr, Floyd ZE, Stephens JM (2007) The modulation of STAT5A/GR complexes during fat cell differentiation and in mature adipocytes. Obesity (Silver Spring) 15:583–590CrossRefGoogle Scholar
  4. Beales PE, Liddi R, Giorgini AE, Signore A, Procaccini E, Batchelor K, Pozzilli P (1998) Troglitazone prevents insulin dependent diabetes in the non-obese diabetic mouse. Eur J Pharmacol 357:221–225PubMedCrossRefGoogle Scholar
  5. Behbod F, Erwin-Cohen RA, Wang ME, Trawick BW, Qu X, Verani R, Kahan BD, Stepkowski SM, Kirken RA (2001) Concomitant inhibition of Janus kinase 3 and calcineurin-dependent signaling pathways synergistically prolongs the survival of rat heart allografts. J Immunol 166:3724–3732PubMedGoogle Scholar
  6. Bright JJ, Du C, Sriram S (1999) Tyrphostin B42 inhibits IL-12-induced tyrosine phosphorylation and activation of Janus kinase-2 and prevents experimental allergic encephalomyelitis. J Immunol 162:6255–6262PubMedGoogle Scholar
  7. Changelian PS, Flanagan ME, Ball DJ, Kent CR, Magnuson KS, Martin WH, Rizzuti BJ, Sawyer PS, Perry BD, Brissette WH, McCurdy SP, Kudlacz EM, Conklyn MJ, Elliott EA, Koslov ER, Fisher MB, Strelevitz TJ, Yoon K, Whipple DA, Sun J, Munchhof MJ, Doty JL, Casavant JM, Blumenkopf TA, Hines M, Brown MF, Lillie BM, Subramanyam C, Shang-Poa C, Milici AJ, Beckius GE, Moyer JD, Su C, Woodworth TG, Gaweco AS, Beals CR, Littman BH, Fisher DA, Smith JF, Zagouras P, Magna HA, Saltarelli MJ, Johnson KS, Nelms LF, Des Etages SG, Hayes LS, Kawabata TT, Finco-Kent D, Baker DL, Larson M, Si MS, Paniagua R, Higgins J, Holm B, Reitz B, Zhou YJ, Morris RE, O’Shea JJ, Borie DC (2003) Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 302:875–878PubMedCrossRefGoogle Scholar
  8. Constantin G, Brocke S, Izikson A, Laudanna C, Butcher EC (1998) Tyrphostin AG490, a tyrosine kinase inhibitor, blocks actively induced experimental autoimmune encephalomyelitis. Eur J Immunol 28:3523–3529PubMedCrossRefGoogle Scholar
  9. Constantin G, Laudanna C, Brocke S, Butcher EC (1999) Inhibition of experimental autoimmune encephalomyelitis by a tyrosine kinase inhibitor. J Immunol 162:1144–1149PubMedGoogle Scholar
  10. Coulter AA, Stephens JM (2006) STAT5 activators modulate acyl CoA oxidase (AOX) expression in adipocytes and STAT5A binds to the AOX promoter in vitro. Biochem Biophys Res Commun 344:1342–1345PubMedCrossRefGoogle Scholar
  11. Crespo O, Kang SC, Daneman R, Lindstrom TM, Ho PP, Sobel RA, Steinman L, Robinson WH (2011) Tyrosine kinase inhibitors ameliorate autoimmune encephalomyelitis in a mouse model of multiple sclerosis. J Clin Immunol 31:1010–1020PubMedCrossRefGoogle Scholar
  12. Davoodi-Semiromi A, Cooper-Dehoff R (2011) Correspondence regarding “Long term treatment with ACE inhibitor enalapril decreases body weight gain and increases life span in rats”. Biochem Pharmacol 83(6):821PubMedCrossRefGoogle Scholar
  13. Davoodi-Semiromi A, Laloraya M, Kumar GP, Purohit S, Jha RK, She JX (2004) A mutant Stat5b with weaker DNA binding affinity defines a key defective pathway in nonobese diabetic mice. J Biol Chem 279:11553–11561PubMedCrossRefGoogle Scholar
  14. Davoodi-Semiromi A, McDuffie M, Litherland S, Clare-Salzler M (2007a) Truncated pStat5B is associated with the Idd4 locus in NOD mice. Biochem Biophys Res Commun 356:655–661PubMedCrossRefGoogle Scholar
  15. Davoodi-Semiromi A, Cheikhi A, Xia C, Litherland S, Clare-Salzler M (2007b) Modulation of CD4+ Foxp3–T-cells with a JAK-STAT5 kinase inhibitor. J Immunol 178:S237–S23cGoogle Scholar
  16. Davoodi-Semiromi A, Hassanzadeh A, Wasserfall CH, Droney A, Atkinson M (2012a) Tyrphostin AG490 agent modestly but significantly prevents onset of type 1 in NOD mouse; implication of immunologic and metabolic effects of a Jak-Stat pathway inhibitor. J Clin Immunol 32(5):1038–1047PubMedCrossRefGoogle Scholar
  17. Davoodi-Semiromi A, Wasserfall CH, Xia CQ, Cooper-DeHoff RM, Wabitsch M, Clare-Salzler M, Atkinson M (2012b) The Tyrphostin agent AG490 prevents and reverses type 1 diabetes in NOD mice. PLoS One 7:e36079PubMedCrossRefGoogle Scholar
  18. Fischer-Posovszky P, Newell FS, Wabitsch M, Tornqvist HE (2008) Human SGBS cells—a unique tool for studies of human fat cell biology. Obes Facts 1:184–189PubMedCrossRefGoogle Scholar
  19. Floyd ZE, Segura BM, He F, Stephens JM (2007) Degradation of STAT5 proteins in 3T3-L1 adipocytes is induced by TNF-{alpha} and cycloheximide in a manner independent of STAT5A activation. Am J Physiol Endocrinol Metab 292:E461–E468PubMedCrossRefGoogle Scholar
  20. Ghoreschi K, Laurence A, O’Shea JJ (2009) Janus kinases in immune cell signaling. Immunol Rev 228:273–287PubMedCrossRefGoogle Scholar
  21. Goncalves S, Fernandez-Sanchez R, Sanchez-Nino MD, Tejedor A, Neria F, Egido J, Ruiz-Ortega M, Ortiz A (2010) Tyrphostins as potential therapeutic agents for acute kidney injury. Curr Med Chem 17:974–986PubMedCrossRefGoogle Scholar
  22. Hagerkvist R, Sandler S, Mokhtari D, Welsh N (2007) Amelioration of diabetes by imatinib mesylate (Gleevec): role of beta-cell NF-kappaB activation and anti-apoptotic preconditioning. FASEB J 21:618–628PubMedCrossRefGoogle Scholar
  23. Higuchi T, Shiraishi T, Shirakusa T, Hirayama S, Shibaguchi H, Kuroki M, Hiratuka M, Yamamoto S, Iwasaki A, Kuroki M (2005) Prevention of acute lung allograft rejection in rat by the Janus kinase 3 inhibitor, tyrphostin AG490. J Heart Lung Transplant 24:1557–1564PubMedCrossRefGoogle Scholar
  24. Ihle JN (1996) Janus kinases in cytokine signalling. Philos Trans R Soc Lond B Biol Sci 351:159–166PubMedCrossRefGoogle Scholar
  25. Imada K, Leonard WJ (2000) The Jak-STAT pathway. Mol Immunol 37:1–11PubMedCrossRefGoogle Scholar
  26. Kirken RA, Erwin RA, Taub D, Murphy WJ, Behbod F, Wang L, Pericle F, Farrar WL (1999) Tyrphostin AG-490 inhibits cytokine-mediated JAK3/STAT5a/b signal transduction and cellular proliferation of antigen-activated human T cells. J Leukoc Biol 65:891–899PubMedGoogle Scholar
  27. Louvet C, Szot GL, Lang J, Lee MR, Martinier N, Bollag G, Zhu S, Weiss A, Bluestone JA (2008) Tyrosine kinase inhibitors reverse type 1 diabetes in nonobese diabetic mice. Proc Natl Acad Sci USA 105:18895–18900PubMedCrossRefGoogle Scholar
  28. Luo C, Laaja P (2004) Inhibitors of JAKs/STATs and the kinases: a possible new cluster of drugs. Drug Discov Today 9:268–275PubMedCrossRefGoogle Scholar
  29. Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A, Levitzki A, Roifman CM (1996) Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 379:645–648PubMedCrossRefGoogle Scholar
  30. Mokhtari D, Welsh N (2010) Potential utility of small tyrosine kinase inhibitors in the treatment of diabetes. Clin Sci (Lond) 118:241–247CrossRefGoogle Scholar
  31. Murawski MR, Litherland SA, Clare-Salzler MJ, Davoodi-Semiromi A (2006) Upregulation of Foxp3 expression in mouse and human Treg is IL-2/STAT5 dependent: implications for the NOD STAT5B mutation in diabetes pathogenesis. Ann N Y Acad Sci 1079:198–204PubMedCrossRefGoogle Scholar
  32. O’Shea JJ (1997) Jaks, STATs, cytokine signal transduction, and immunoregulation: are we there yet? Immunity 7:1–11PubMedCrossRefGoogle Scholar
  33. O’Shea JJ, Pesu M, Borie DC, Changelian PS (2004) A new modality for immunosuppression: targeting the JAK/STAT pathway. Nat Rev Drug Discov 3:555–564PubMedCrossRefGoogle Scholar
  34. O’Shea JJ, Park H, Pesu M, Borie D, Changelian P (2005) New strategies for immunosuppression: interfering with cytokines by targeting the Jak/Stat pathway. Curr Opin Rheumatol 17:305–311PubMedCrossRefGoogle Scholar
  35. Richard AJ, Stephens JM (2011) Emerging roles of JAK-STAT signaling pathways in adipocytes. Trends Endocrinol Metab 22:325–332PubMedCrossRefGoogle Scholar
  36. Saemann MD, Zeyda M, Stulnig TM, Bohmig GA, Wekerle T, Horl WH, Zlabinger GJ (2004) Janus kinase-3 (JAK3) inhibition: a novel immunosuppressive option for allogeneic transplantation. Transpl Int 17:481–489PubMedGoogle Scholar
  37. Santos FP, Verstovsek S (2011) JAK2 inhibitors: what’s the true therapeutic potential? Blood Rev 25:53–63PubMedCrossRefGoogle Scholar
  38. Sidhu M, Cotoner CA, Guleng B, Arihiro S, Chang S, Duncan KW, Ajami AM, Chau M, Reinecker HC (2011) Small molecule tyrosine kinase inhibitors for the treatment of intestinal inflammation. Inflamm Bowel Dis 17:2416–2426PubMedCrossRefGoogle Scholar
  39. Stepkowski SM, Nagy ZS, Wang ME, Behbod F, Erwin-Cohen R, Kahan BD, Kirken RA (2001) PNU156804 inhibits Jak3 tyrosine kinase and rat heart allograft rejection. Transplant Proc 33:3272–3273PubMedCrossRefGoogle Scholar
  40. Stepkowski SM, Erwin-Cohen RA, Behbod F, Wang ME, Qu X, Tejpal N, Nagy ZS, Kahan BD, Kirken RA (2002) Selective inhibitor of Janus tyrosine kinase 3, PNU156804, prolongs allograft survival and acts synergistically with cyclosporine but additively with rapamycin. Blood 99:680–689PubMedCrossRefGoogle Scholar
  41. Stewart WC, Pearcy LA, Floyd ZE, Stephens JM (2011) STAT5A expression in Swiss 3T3 cells promotes adipogenesis in vivo in an athymic mice model system. Obesity (Silver Spring) 19:1731–1734CrossRefGoogle Scholar
  42. Wabitsch M, Brenner RE, Melzner I, Braun M, Moller P, Heinze E, Debatin KM, Hauner H (2001) Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation. Int J Obes Relat Metab Disord 25:8–15PubMedCrossRefGoogle Scholar
  43. Wang LH, Kirken RA, Erwin RA, Yu CR, Farrar WL (1999) JAK3, STAT, and MAPK signaling pathways as novel molecular targets for the tyrphostin AG-490 regulation of IL-2-mediated T cell response. J Immunol 162:3897–3904PubMedGoogle Scholar
  44. White UA, Stephens JM (2010a) Neuropoietin activates STAT3 independent of LIFR activation in adipocytes. Biochem Biophys Res Commun 395:48–50PubMedCrossRefGoogle Scholar
  45. White UA, Stephens JM (2010b) Transcriptional factors that promote formation of white adipose tissue. Mol Cell Endocrinol 318:10–14PubMedCrossRefGoogle Scholar
  46. White UA, Coulter AA, Miles TK, Stephens JM (2007) The STAT5A-mediated induction of pyruvate dehydrogenase kinase 4 expression by prolactin or growth hormone in adipocytes. Diabetes 56:1623–1629PubMedCrossRefGoogle Scholar
  47. Yaacob NS, Kaderi MA, Norazmi MN (2009) Differential transcriptional expression of PPARalpha, PPARgamma1, and PPARgamma2 in the peritoneal macrophages and T-cell subsets of non-obese diabetic mice. J Clin Immunol 29:595–602PubMedCrossRefGoogle Scholar
  48. Zhang K, Guo W, Yang Y, Wu J (2011) JAK2/STAT3 pathway is involved in the early stage of adipogenesis through regulating C/EBPbeta transcription. J Cell Biochem 112:488–497PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Abdoreza Davoodi-Semiromi
    • 1
    • 4
  • C. H. Wasserfall
    • 2
  • A. Hassanzadeh
    • 1
  • R. M. Cooper-DeHoff
    • 1
  • M. Wabitsch
    • 3
  • M. Atkinson
    • 2
  1. 1.Department of Pharmacotherapy and Translational Research, College of PharmacyUniversity of FloridaGainesvilleUSA
  2. 2.Department of Pathology, Immunology and Laboratory MedicineUniversity of FloridaGainesvilleUSA
  3. 3.Division of Pediatric Endocrinology, Diabetes and Obesity Unit, Department of Pediatrics and Adolescent MedicineUniversity of UlmUlmGermany
  4. 4.Department of Neurology, Miller School of MedicineUniversity of MiamiMiamiUSA

Personalised recommendations