Immunogenetics

, Volume 65, Issue 1, pp 25–35 | Cite as

Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii)

  • Lauren E. van der Kraan
  • Emily S. W. Wong
  • Nathan Lo
  • Beata Ujvari
  • Katherine Belov
Original Paper

Abstract

Within the mammalian immune system, natural killer (NK) cells contribute to the first line of defence against infectious agents and tumours. Their activity is regulated, in part, by cell surface NK cell receptors. NK receptors can be divided into two unrelated, but functionally analogous superfamilies based on the structure of their extracellular ligand-binding domains. Receptors belonging to the C-type lectin superfamily are predominantly encoded in the natural killer complex (NKC), while receptors belonging to the immunoglobulin superfamily are predominantly encoded in the leukocyte receptor complex (LRC). Natural killer cell receptors are emerging as a rapidly evolving gene family which can display significant intra- and interspecific variation. To date, most studies have focused on eutherian mammals, with significantly less known about the evolution of these receptors in marsupials. Here, we describe the identification of 43 immunoglobulin domain-containing LRC genes in the genome of the Tasmanian devil (Sarcophilus harrisii), the largest remaining marsupial carnivore and only the second marsupial species to be studied. We also identify orthologs of NKC genes KLRK1, CD69, CLEC4E, CLEC1B, CLEC1A and an ortholog of an opossum NKC receptor. Characterisation of these regions in a second, distantly related marsupial provides new insights into the dynamic evolutionary histories of these receptors in mammals. Understanding the functional role of these genes is also important for the development of therapeutic agents against Devil Facial Tumour Disease, a contagious cancer that threatens the Tasmanian devil with extinction.

Keywords

NKC LRC Natural killer cell receptors Evolution Marsupial Tasmanian devil 

Notes

Acknowledgments

This work was supported by the Australian Research Council. KB is an ARC Future Fellow. We thank Tony Papenfuss from the Walter and Eliza Hall Institute for access to genomic resources.

Supplementary material

251_2012_643_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1.18 mb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Anderson KJ, Allen RL (2009) Regulation of T-cell immunity by leucocyte immunoglobulin-like receptors: innate immune receptors for self on antigen-presenting cells. Immunology 127:8–17PubMedCrossRefGoogle Scholar
  3. Barrow A, Trowsdale J (2008) The extended human leukocyte receptor complex: diverse ways of modulating immune responses. Immunol Rev 224:98–123PubMedCrossRefGoogle Scholar
  4. Belov K, Sanderson CE, Deakin JE, Wong ESW, Assange D, McColl KA, Gout A, de Bono B, Barrow AD, Speed TP, Trowsdale J, Papenfuss AT (2007) Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system. Genome Res 17:982–991PubMedCrossRefGoogle Scholar
  5. Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512PubMedCrossRefGoogle Scholar
  6. Blasioli J, Paust S, Thomas ML (1999) Definition of the sites of interaction between the protein tyrosine phosphatase SHP-1 and CD22. J Biol Chem 274:2303–2307PubMedCrossRefGoogle Scholar
  7. Brown GK, Kreiss A, Lyons AB, Woods GM (2011) Natural killer cell mediated cytotoxic responses in the Tasmanian devil. PLoS One 6:e24475PubMedCrossRefGoogle Scholar
  8. Burgess SJ, Maasho K, Masilamani M, Narayanan S, Borrego F, Coligan JE (2008) The NKG2D receptor: immunobiology and clinical implications. Immunol Res 40:18–34PubMedCrossRefGoogle Scholar
  9. Cao H, de Bono B, Belov K, Wong E, Trowsdale J, Barrow A (2009) Comparative genomics indicates the mammalian CD33rSiglec locus evolved by an ancient large-scale inverse duplication and suggests all Siglecs share a common ancestral region. Immunogenetics 61:401–417PubMedCrossRefGoogle Scholar
  10. Chiang H-I, Zhou H, Raudsepp T, Jesudhasan P, Zhu J (2007) Chicken CD69 and CD94/NKG2-like genes in a chromosomal region syntenic to mammalian natural killer gene complex. Immunogenetics 59:603–611PubMedCrossRefGoogle Scholar
  11. Colonna M, Samaridis J, Angman L (2000) Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur J Immunol 30:697–704PubMedCrossRefGoogle Scholar
  12. Cummings RD, McEver RP (2009) C-type lectins. In: Varki A, Cummings R, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  13. Desai S, Heffelfinger A, Orcutt T, Litman G, Yoder J (2008) The medaka novel immune-type receptor (NITR) gene clusters reveal an extraordinary degree of divergence in variable domains. BMC Evol Biol 8:177PubMedCrossRefGoogle Scholar
  14. Eagle RA, Trowsdale J (2007) Promiscuity and the single receptor: NKG2D. Nat Rev Immunol 7:737–744PubMedCrossRefGoogle Scholar
  15. Edgar R (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma 5:113CrossRefGoogle Scholar
  16. Flornes LM, Bryceson YT, Spurkland A, Lorentzen JC, Dissen E, Fossum S (2004) Identification of lectin-like receptors expressed by antigen presenting cells and neutrophils and their mapping to a novel gene complex. Immunogenetics 56:506–517PubMedCrossRefGoogle Scholar
  17. Gay LJ, Felding-Habermann B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11:123–134PubMedCrossRefGoogle Scholar
  18. Hall TA (1999) BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  19. Hao L, Klein J, Nei M (2006) Heterogeneous but conserved natural killer receptor gene complexes in four major orders of mammals. Proc Natl Acad Sci U S A 103:3192–3197PubMedCrossRefGoogle Scholar
  20. Hedges SB, Dudley J, Kumar S (2006) TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22:2971–2972PubMedCrossRefGoogle Scholar
  21. Holz P (2008) Dasyurids. In: Vogelnest V, Woods R (eds) Medicine of Australian mammals. CSIRO Publishing, Melbourne, pp 359–382Google Scholar
  22. Kammerer R, Zimmermann W (2010) Coevolution of activating and inhibitory receptors within mammalian carcinoembryonic antigen families. BMC Biol 8:12PubMedCrossRefGoogle Scholar
  23. Kelley J, Walter L, Trowsdale J (2005) Comparative genomics of natural killer cell receptor gene clusters. PLoS Genet 1:e27CrossRefGoogle Scholar
  24. Kirsch JAW, Springer MS, Lapointe FJ (1997) DNA-hybridisation studies of marsupials and their implications for metatherian classification. Aust J Zool 45:211–280CrossRefGoogle Scholar
  25. Laun K, Coggill P, Palmer S, Sims S, Ning Z, Ragoussis J, Volpi E, Wilson N, Beck S, Ziegler A, Volz A (2006) The leukocyte receptor complex in chicken is characterized by massive expansion and diversification of immunoglobulin-like loci. PLoS Genet 2:e73PubMedCrossRefGoogle Scholar
  26. Martin AM, Kulski JK, Witt C, Pontarotti P, Christiansen FT (2002) Leukocyte Ig-like receptor complex (LRC) in mice and men. Trends Immunol 23:81–88PubMedCrossRefGoogle Scholar
  27. Martin P, Gomez M, Lamana A, Cruz-Adalia A, Ramirez-Huesca M, Ursa MA, Yanez-Mo M, Sanchez-Madrid F (2010) CD69 association with Jak3/Stat5 proteins regulates Th17 cell differentiation. Mol Cell Biol 30:4877–4889PubMedCrossRefGoogle Scholar
  28. McIntire RH, Sifers T, Platt JS, Ganacias KG, Langat DK, Hunt JS (2008) Novel HLA-G-binding leukocyte immunoglobulin-like Receptor (LILR) expression patterns in human placentas and umbilical cords. Placenta 29:631–638PubMedCrossRefGoogle Scholar
  29. Miller W, Hayes VM, Ratan A, Petersen DC, Wittekindt NE, Miller J, Walenz B, Knight J, Qi J, Zhao F, Wang Q, Bedoya-Reina OC, Katiyar N, Tomsho LP, Kasson LM, Hardie R-A, Woodbridge P, Tindall EA, Bertelsen MF, Dixon D, Pyecroft S, Helgen KM, Lesk AM, Pringle TH, Patterson N, Zhang Y, Kreiss A, Woods GM, Jones ME, Schuster SC (2011) Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil). Proc Natl Acad Sci 108:12348–12353PubMedCrossRefGoogle Scholar
  30. Murchison EP, Schulz-Trieglaff OB, Ning Z, Alexandrov LB, Bauer MJ, Fu B, Hims M, Ding Z, Ivakhno S, Stewart C, Ng BL, Wong W, Aken B, White S, Alsop A, Becq J, Bignell GR, Cheetham RK, Cheng W, Connor TR, Cox AJ, Feng Z-P, Gu Y, Grocock RJ, Harris SR, Khrebtukova I, Kingsbury Z, Kowarsky M, Kreiss A, Luo S, Marshall J, McBride DJ, Murray L, Pearse A-M, Raine K, Rasolonjatovo I, Shaw R, Tedder P, Tregidgo C, Vilella AJ, Wedge DC, Woods GM, Gormley N, Humphray S, Schroth G, Smith G, Hall K, Searle SMJ, Carter NP, Papenfuss AT, Futreal PA, Campbell PJ, Yang F, Bentley DR, Evers DJ, Stratton MR (2012) Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148:780–791PubMedCrossRefGoogle Scholar
  31. Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152PubMedCrossRefGoogle Scholar
  32. Nieswandt B, Watson SP (2003) Platelet-collagen interaction: is GPVI the central receptor? Blood 102:449–461PubMedCrossRefGoogle Scholar
  33. Nylenna Ø, Naper C, Vaage JT, Woon PY, Gauguier D, Dissen E, Ryan JC, Fossum S (2005) The genes and gene organization of the Ly49 region of the rat natural killer cell gene complex. Eur J Immunol 35:261–272PubMedCrossRefGoogle Scholar
  34. Ozaki Y, Suzuki-Inoue K, Inoue O (2009) Novel interactions in platelet biology: CLEC-2/podoplanin and laminin/GPVI. J Thromb Haemost 7:191–194PubMedCrossRefGoogle Scholar
  35. Pearse AM, Swift K (2006) Allograft theory: transmission of devil facial-tumour disease. Nature 439:549PubMedCrossRefGoogle Scholar
  36. Renfree M, Papenfuss A, Deakin J, Lindsay J, Heider T, Belov K, Rens W, Waters P, Pharo E, Shaw G, Wong E, Lefevre C, Nicholas K, Kuroki Y, Wakefield M, Zenger K, Wang C, Ferguson-Smith M, Nicholas F, Hickford D, Yu H, Short K, Siddle H, Frankenberg S, Chew K, Menzies B, Stringer J, Suzuki S, Hore T, Delbridge M (2011) Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biol 12:414CrossRefGoogle Scholar
  37. Rogers SL, Göbel TW, Viertlboeck BC, Milne S, Beck S, Kaufman J (2005) Characterization of the chicken C-type lectin-like receptors B-NK and B-lec suggests that the NK complex and the MHC share a common ancestral region. J Immunol 174:3475–3483PubMedGoogle Scholar
  38. Sanderson CE (2009) Immune genes: genomic and diversity studies in marsupials and monotremes. Dissertation, University of SydneyGoogle Scholar
  39. Sato A, Mayer WE, Overath P, Klein J (2003) Genes encoding putative natural killer cell C-type lectin receptors in teleostean fishes. Proc Natl Acad Sci 100:7779–7784PubMedCrossRefGoogle Scholar
  40. Séverin S, Pollitt AY, Navarro-Nuñez L, Nash CA, Mourão-Sá D, Eble JA, Senis YA, Watson SP (2011) Syk-dependent phosphorylation of CLEC-2. J Biol Chem 286:4107–4116PubMedCrossRefGoogle Scholar
  41. Sloane DE, Tedla N, Awoniyi M, MacGlashan DW, Borges L, Austen KF, Arm JP (2004) Leukocyte immunoglobulin-like receptors: novel innate receptors for human basophil activation and inhibition. Blood 104:2832–2839PubMedCrossRefGoogle Scholar
  42. Sobanov Y, Bernreiter A, Derdak S, Mechtcheriakova D, Schweighofer B, Düchler M, Kalthoff F, Hofer E (2001) A novel cluster of lectin-like receptor genes expressed in monocytic, dendritic and endothelial cells maps close to the NK receptor genes in the human NK gene complex. Eur J Immunol 31:3493–3503PubMedCrossRefGoogle Scholar
  43. Suzuki-Inoue K, Fuller GLJ, García Á, Eble JA, Pöhlmann S, Inoue O, Gartner TK, Hughan SC, Pearce AC, Laing GD, Theakston RDG, Schweighoffer E, Zitzmann N, Morita T, Tybulewicz VLJ, Ozaki Y, Watson SP (2006) A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 107:542–549PubMedCrossRefGoogle Scholar
  44. Takahashi T, Yawata M, Raudsepp T, Lear TL, Chowdhary BP, Antczak DF, Kasahara M (2004) Natural killer cell receptors in the horse: evidence for the existence of multiple transcribed Ly49 genes. Eur J Immunol 34:773–784PubMedCrossRefGoogle Scholar
  45. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  46. Thebault P, Lhermite N, Tilly G, Le Texier L, Quillard T, Heslan M, Anegon I, Soulillou J-P, Brouard S, Charreau B, Cuturi M-C, Chiffoleau E (2009) The C-type lectin-like receptor CLEC-1, expressed by myeloid cells and endothelial cells, is up-regulated by immunoregulatory mediators and moderates T cell activation. J Immunol 183:3099–3108PubMedCrossRefGoogle Scholar
  47. Varki A, Crocker PR (2009) I-type lectins. In: Varki A, Cummings R, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  48. Viertlboeck BC, Habermann FA, Schmitt R, Groenen MAM, Du Pasquier L, Göbel TW (2005) The chicken leukocyte receptor complex: a highly diverse multigene family encoding at least six structurally distinct receptor types. J Immunol 175:385–393PubMedGoogle Scholar
  49. Walker JA, Smith KGC (2008) CD22: an inhibitory enigma. Immunology 123:314–325PubMedCrossRefGoogle Scholar
  50. Wong ES, Sanderson CE, Deakin JE, Whittington CM, Papenfuss AT, Belov K (2009) Identification of natural killer cell receptor clusters in the platypus genome reveals an expansion of C-type lectin genes. Immunogenetics 61:565–579PubMedCrossRefGoogle Scholar
  51. Wong E, Papenfuss A, Belov K (2011) Immunome database for marsupials and monotremes. BMC Immunol 12:48PubMedCrossRefGoogle Scholar
  52. Woods G, Kreiss A, Belov K, Siddle H, Obendorf D, Muller H (2007) The immune response of the Tasmanian devil (Sarcophilus harrisii) and devil facial tumour disease. Ecohealth 4:338–345CrossRefGoogle Scholar
  53. Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T (2008) Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol 9:1179–1188PubMedCrossRefGoogle Scholar
  54. Yamasaki S, Matsumoto M, Takeuchi O, Matsuzawa T, Ishikawa E, Sakuma M, Tateno H, Uno J, Hirabayashi J, Mikami Y, Takeda K, Akira S, Saito T (2009) C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc Natl Acad Sci 106:1897–1902PubMedCrossRefGoogle Scholar
  55. Yoder JA (2004) Investigating the morphology, function and genetics of cytotoxic cells in bony fish. Comp Biochem Physiol 138:271–280Google Scholar
  56. Yoder J, Litman G (2011) The phylogenetic origins of natural killer receptors and recognition: relationships, possibilities, and realities. Immunogenetics 63:123–141PubMedCrossRefGoogle Scholar
  57. Yoder J, Cannon J, Litman R, Murphy C, Freeman J, Litman G (2008) Evidence for a transposition event in a second NITR gene cluster in zebrafish. Immunogenetics 60:257–265PubMedCrossRefGoogle Scholar
  58. Zelensky AN, Gready JE (2003) Comparative analysis of structural properties of the C-type-lectin-like domain (CTLD). Protein Struct Funct Bioinform 52:466–477CrossRefGoogle Scholar
  59. Zelensky A, Gready J (2004) C-type lectin-like domains in Fugu rubripes. BMC Genomics 5:51PubMedCrossRefGoogle Scholar
  60. Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272:6179–6217PubMedCrossRefGoogle Scholar
  61. Ziegler SF, Ramsdell F, Hjerrild KA, Armitage RJ, Grabstein KH, Hennen KB, Farrah T, Fanslow WC, Shevach EM, Alderson MR (1993) Molecular characterization of the early activation antigen CD69: a type II membrane glycoprotein related to a family of natural killer cell activation antigens. Eur J Immunol 23:1643–1648PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Lauren E. van der Kraan
    • 1
  • Emily S. W. Wong
    • 1
  • Nathan Lo
    • 2
  • Beata Ujvari
    • 1
  • Katherine Belov
    • 1
  1. 1.Faculty of Veterinary ScienceUniversity of SydneySydneyAustralia
  2. 2.School of Biological SciencesUniversity of SydneySydneyAustralia

Personalised recommendations