Immunogenetics

, Volume 64, Issue 11, pp 825–838 | Cite as

MHC class I of saltwater crocodiles (Crocodylus porosus): polymorphism and balancing selection

  • Weerachai Jaratlerdsiri
  • Sally R. Isberg
  • Damien P. Higgins
  • Jaime Gongora
Original Paper

Abstract

Saltwater crocodiles are in high demand for the production of luxury fashion items. However, their susceptibility to disease incurs substantial losses and it is hoped to be able to genetically select these animals for disease resistance. So far, this has only been enabled by phenotypic selection. Investigating the major histocompatibility complex (MHC) could provide insight into the ability of an individual to respond to pathogens acting as a selective pressure on the host. Here, we assessed genetic diversity and a role of selection in shaping the diversity of MHC class I exon 3 among 42 saltwater crocodiles from nine river basins in the Northern Territory, Australia. We generated 640 sequences using cloning and sequencing methods and identified 43 MHC variants among them. Phylogenetic analyses clustered these variants into two major clades, which may suggest two gene lineages. We found the number of variants within an individual varying between one and seven, indicating that there are at least four gene loci in this species. Selection detection analyses revealed an elevated ratio of nonsynonymous to synonymous substitutions (mean = 1.152 per codon), suggesting balancing selection. Population differentiation analyses revealed that the MHC did not show structuring among the river basins, and there were some shared variants among them. This may be a result of possible gene flow and/or similar selection pressures among populations. These findings provide background knowledge to identify potential MHC markers, which could be used for selecting genetically variable individuals for future disease associations. All MHC class I exon 3 sequences reported in this paper were submitted to the GenBank database with following accession numbers: HQ008785–HQ008789, HQ008791–HQ008798, HQ008808–HQ008815, HQ008824, HQ008826–HQ008830, HQ008835, HQ008839, HQ008842–HQ008850, and JX023536–JX023540.

Keywords

MHC class I Saltwater crocodile Genetic diversity Balancing selection 

Notes

Acknowledgments

We would like to thank staff at Darwin Crocodile Farm for allowing access to the animals and for their assistance with sampling and data collection. All research took place at the University of Sydney, Australia. Blood samples were provided by Darwin Crocodile Farm, NT, Australia. Capturing, handling, and blood sampling of crocodiles were approved by the Australian Animal Ethics Committee, permit no. N00/5-2009/3/5057. We are also grateful to Dr. Camilla Whittington, Dr. Karma Nidup, and Quintin Lau for copyediting early drafts of the manuscript.

Supplementary material

251_2012_637_MOESM1_ESM.pdf (85 kb)
ESM 1(PDF 84 kb)
251_2012_637_MOESM2_ESM.pdf (57 kb)
ESM 2(PDF 57 kb)
251_2012_637_MOESM3_ESM.pdf (124 kb)
ESM 3(PDF 123 kb)
251_2012_637_MOESM4_ESM.pdf (13 kb)
ESM 4(PDF 12 kb)
251_2012_637_MOESM5_ESM.pdf (61 kb)
ESM 5(PDF 60 kb)
251_2012_637_MOESM6_ESM.pdf (13 kb)
ESM 6(PDF 12 kb)
251_2012_637_MOESM7_ESM.pdf (13 kb)
ESM 7(PDF 12 kb)
251_2012_637_MOESM8_ESM.pdf (274 kb)
ESM 8(PDF 273 kb)
251_2012_637_MOESM9_ESM.pdf (50 kb)
ESM 9(PDF 49 kb)
251_2012_637_MOESM10_ESM.pdf (81 kb)
ESM 10(PDF 81 kb)
251_2012_637_MOESM11_ESM.pdf (62 kb)
ESM 11(PDF 62 kb)
251_2012_637_MOESM12_ESM.pdf (65 kb)
ESM 12(PDF 65 kb)
251_2012_637_MOESM13_ESM.docx (112 kb)
ESM 13(DOCX 111 kb)

References

  1. Acevedo-Whitehouse K, Cunningham AA (2006) Is MHC enough for understanding wildlife immunogenetics? Trends Ecol Evol 21:433–438PubMedCrossRefGoogle Scholar
  2. Aeschlimann PB, Häberli MA, Reusch TBH, Boehm T, Milinski M (2003) Female sticklebacks Gasterosteus aculeatus use self-reference to optimize MHC allele number during mate selection. Behav Ecol Sociobiol 54:119–126Google Scholar
  3. Alcaide M, Edwards SV, Cadahia SV, Negro JJ (2009) MHC class I genes of birds of prey: isolation, polymorphism and diversifying selection. Conserv Genet 10:1349–1355CrossRefGoogle Scholar
  4. Anmarkrud JA, Johnsen A, Bachmann L, Lifjeld JT (2010) Ancestral polymorphism in exon 2 of bluethroat (Luscinia svecica) MHC class II B genes. J Evol Biol 23:1206–1217PubMedCrossRefGoogle Scholar
  5. Bonneaud C, Sorci G, Morin V, Westerdahl H, Zoorob R, Witzell H (2004) Diversity of MHC class I and IIB genes in house sparrows (Passer domesticus). Immunogenetics 55:855–865PubMedCrossRefGoogle Scholar
  6. Bouvier M (2003) Accessory proteins and the assembly of human class I MHC molecules: a molecular and structural perspective. Mol Immunol 39:697–706PubMedCrossRefGoogle Scholar
  7. Brien ML, Read MA, McCallum HI, Grigg GC (2008) Home range and movements of radio-tracked estuarine crocodiles (Crocodylus porosus) within a non-tidal waterhole. Wildl Res 35:140–149CrossRefGoogle Scholar
  8. Briles WE, Stone HA, Cole RK (1977) Mareks-disease-effects of B histocompatibility alloalleles in resistant and susceptible chicken. Science 195:193–195PubMedCrossRefGoogle Scholar
  9. Buenviaje GN, Ladds PW, Melville L, Manolis SC (1994) Disease-husbandry associations in farmed crocodiles in Queensland and the Northern Territory. Aust Vet J 71:165–173PubMedCrossRefGoogle Scholar
  10. Castro-Prieto A, Wachter B, Sommer S (2011) Cheetah paradigm revisited: MHC diversity in the world's largest free-ranging population. Mol Biol Evol 28:1455–1468PubMedCrossRefGoogle Scholar
  11. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214PubMedCrossRefGoogle Scholar
  12. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCrossRefGoogle Scholar
  13. Edwards SV, Grahn M, Potts WK (1995) Dynamics of MHC evolution in birds and crocodilians: amplification of class II genes with degenerate primers. Mol Ecol 4:719–729PubMedCrossRefGoogle Scholar
  14. Eizaguirre C, Lenz TL, Kalbe M, Milinski M (2012) Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations. Nat Commun 10:621CrossRefGoogle Scholar
  15. Ekblom R, Saether SA, Jacobsson P, Fiske P, Sahlman T, Grahn M, Kålås JA, Höglund J (2007) Spatial pattern of MHC class II variation in the great snipe (Gallinago media). Mol Ecol 16:1439–1451PubMedCrossRefGoogle Scholar
  16. Excoffier L, Lischer HEL (2010) Arlequin suite ver. 3.5: a new series of programs to perform population genetics analysis under Linux and Windows. Mol Ecol Res 10:564–567CrossRefGoogle Scholar
  17. Forsberg LA, Dannewitz J, Petersson E, Grahn M (2007) Influence of genetic dissimilarity in the reproductive success and mate choice of brown trout—females fishing for optimal MHC dissimilarity. J Evol Biol 20:1859–1869PubMedCrossRefGoogle Scholar
  18. Gaudieri S, Dawkins RL, Habara K, Kulski JK, Gojobori T (2000) SNP profile within the human major histocompatibility complex reveals an extreme and interrupted level of nucleotide diversity. Genome Res 10:1579–1586PubMedCrossRefGoogle Scholar
  19. Glaberman S, Caccone A (2008) Species-specific evolution of class I MHC genes in iguanas (Order: Squamata; Subfamily: Iguaninae). Immunogenetics 60:371–382PubMedCrossRefGoogle Scholar
  20. Gratten J (2003) The molecular systematics, phylogeography and population genetics of indo-pacific Crocodylus. The University of QueenslandGoogle Scholar
  21. Griggio M, Biard C, Penn DJ, Hoi H (2011) Female house sparrows "count on" male genes: experimental evidence for MHC-dependent mate preference in birds. BMC Evol Biol 11:44PubMedCrossRefGoogle Scholar
  22. Grimholt U, Larsen S, Nordmo R, Midtlyng P, Kjoeglum S, Storset A, Saebo S, Stet RJM (2003) MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class II loci. Immunogenetics 55:210–219PubMedCrossRefGoogle Scholar
  23. Heifetz EM, Fulton JE, O'Sullivan NP, Arthur JA, Cheng H, Wang J, Soller M, Dekkers JCM (2009) Mapping QTL affecting resistance to Marek's disease in an F6 advanced intercross population of commercial layer chickens. BMC Genomics 10:1–20CrossRefGoogle Scholar
  24. Hill AV (1991) HLA association with malaria in Africa: some implications for MHC evolution. In: Klein J, Klein D (eds) Molecular evolution of the major histocompatibility complex. Springer, Berlin, pp 403–419CrossRefGoogle Scholar
  25. Hughes AL, Nei M (1992) Maintenance of MHC polymorphism. Nature 355:402–403PubMedCrossRefGoogle Scholar
  26. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267PubMedCrossRefGoogle Scholar
  27. Isberg SR, Chen Y, Barker SG, Moran C (2004a) Analysis of microsatellites and parentage testing in saltwater crocodiles. J Hered 95(5):445–449PubMedCrossRefGoogle Scholar
  28. Isberg SR, Thomson PC, Nicholas FW, Barker SG, Moran C (2004b) A genetic improvement program for farmed saltwater crocodiles. RIRDC, CanberraGoogle Scholar
  29. Isberg SR, Shilton C, Thomson P (2009) Improving Australia's crocodile industry productivity—understanding runtism and survival. RIRDC, CanberraGoogle Scholar
  30. Jerrett I, Elliott N, Tran-Nguyen L (2008) Chlamydial infection in farmed crocodiles. RIRDC, Barton, A.C.T.Google Scholar
  31. Kaufman J, Salomonsen J, Flajnik MF (1994) Evolutionary conservation of MHC class I and class II molecules—different yet the same. Semin Immunol 6:411–424PubMedCrossRefGoogle Scholar
  32. Kay WR (2004) Movements and home-ranges of radio-tracked Crocodylus porosus in Cambridge Gulf region in Western Australia. Wildl Res 31:495–508CrossRefGoogle Scholar
  33. Keane TM, Creevey CJ, Pentony MM, Naughton TJ, McInerney JO (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 6:29–45PubMedCrossRefGoogle Scholar
  34. King RC, Stansfield WD, Mulligan PK (2007) A dictionary of genetics. Oxford University Press, OxfordGoogle Scholar
  35. Kita YF, Hosomichi K, Kohara S, Itoh Y, Ogasawara K, Tsuchiya H, Torii R, Inoko H, Blancher A, Kulski JK, Shiina T (2009) MHC class I A loci polymorphism and diversity in three Southeast Asian populations of cynomolgus macaque. Immunogenetics 61:635–648PubMedCrossRefGoogle Scholar
  36. Kjøglum S, Larsen S, Bakke HG, Grimholt U (2007) The effect of specific mhc class I and class II combinations on resistance to furunculosis in atlantic salmon (Salmo salar). Scand J Immunol 67:160–168PubMedCrossRefGoogle Scholar
  37. Klein J (1987) Origin of major histocompatibility complex polymorphism: the trans-species hypothesis. Human Immunol 19:155–162CrossRefGoogle Scholar
  38. Klein J, Bontrop RE, Dawkins RL, Erlich HA, Gyllensten UB, Heise ER, Jones PP, Parham P, Wakeland EK, Watkins DI (1990) Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics 31:217–219PubMedGoogle Scholar
  39. Kloch A, Babik W, Bajer A, Siński E, Radwan J (2010) Effects of an MHC-DRB genotype and allele number on the load of gut parasites in the bank vole Myodes glareolus. Mol Ecol 19:255–265PubMedCrossRefGoogle Scholar
  40. Leach GJ, Delaney R, Fukuda Y (2009) Management program for the saltwater crocodile in the Northern Territory of Australia, 2009–2014. Northern Territory Department of Natural Resources, Environment, The Arts and Sport, DarwinGoogle Scholar
  41. Liang Q, Wei L, Wang X, He H (2010) MHC class I loci of the bar-headed goose (Anser indicus). Genet Mol Biol 33:573–577PubMedCrossRefGoogle Scholar
  42. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  43. Livant EJ, Brigati JR, Ewald SJ (2004) Diversity and locus specificity of chicken MHC B class I sequences. Anim Genet 35:18–27PubMedCrossRefGoogle Scholar
  44. Lloyd M, Morris PJ (1999) Phlebotomy techniques in crocodilians. Bull Assoc Rep Amphib Vet 9:12–14Google Scholar
  45. Loiseau C, Richard M, Garnier S, Chastel O, Julliard R, Zoorob R, Sorci G (2009) Diversifying selection on MHC class I in the house sparrow (Passer domesticus). Mol Ecol 18:1331–1340PubMedCrossRefGoogle Scholar
  46. Luck NL, Thomas KC, Morin-Adeline VE, Barwick S, Chong AY, Carpenter EL, Wan L, Willet CE, Langford-Salisbury SM, Abdelsayd M, Ang RA, Atkinson SJ, Barcelo FG, Booth MB, Bradbury EJ, Branighan TL, Brown J, Castillo LE, Chandler ND, Chong JY, Collits KJ, Cook E, Cruz RE, Farrugia CA, Fletcher JL, Fletcher S, Gamaliel NS, Gurr JF, Hallett NJ, Hargreaves G, Harris T, Hollings S, Hopcroft RL, Johinke D, Kern PL, Kiddell JL, Kilby KE, Kragic B, Kwan JH, Lee JI, Liang JM, Lillie MC, Lui BC, Luk SW, Lun KH, Marshall KL, Marzec JA, Masters KT, Mazurkijevic LJ, Medlock J, Meoli C, Morris KM, Noh YH, Okazaki H, Orourke TJ, Payne EM, Powell DJ, Quinlivan AR, Reeves TJ, Robson KL, Royle LJ, Stevenson R, Sellens T, Sun Z, Sutton AL, Swan A, Tang JM, Tinker JE, Tomlinson SC, Wilkin T, Wright AL, Xiao ST, Yang J, Yee C, Jaratlerdsiri W, Isberg SR, Miles L, Higgins D, Lane A, Gongora J (2012) Mitochondrial DNA analyses of the saltwater crocodile (Crocodylus porosus) from the Northern Territory of Australia. Aust J Zool. http://dx.doi.org/10.1071/ZO12008
  47. Martin DP, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262PubMedCrossRefGoogle Scholar
  48. Martinsohn JT, Sousa AB, Guethlein LA, Howard JC (1999) The gene conversion hypothesis of MHC evolution: a review. Immunogenetics 50:168PubMedCrossRefGoogle Scholar
  49. Melville L, Davis S, Shilton C, Isberg S, Chong A, Gongora J (2012) Viral and endogenous retroviral detection and characterisation in farmed crocodiles. RIRDC, Barton, ACTGoogle Scholar
  50. Miller HC, Belov K, Daugherty CH (2006) MHC class I genes in the tuatara (Sphenodon spp.): evolution of the MHC in an ancient reptilian order. Mol Biol Evol 23:949–956PubMedCrossRefGoogle Scholar
  51. Miller HC, Andrews-Cookson M, Daugherty CH (2007) Two patterns of variation among MHC Class I loci in tuatara (Sphenodon punctatus). J Hered 98:666–677PubMedCrossRefGoogle Scholar
  52. Miller HC, Miller KA, Daugherty CH (2008) Reduced MHC variation in a threatened tuatara species. Anim Conserv 11:206–214CrossRefGoogle Scholar
  53. Miller HC, Allendorf F, Daugherty CH (2010) Genetic diversity and differentiation at MHC genes in island populations of tuatara (Sphenodon spp.). Mol Ecol 19:3894–3908PubMedCrossRefGoogle Scholar
  54. Murphy K, Travers P, Walport M (2008) Immunobiology. Garland, New YorkGoogle Scholar
  55. Nonaka MI, Aizawa K, Mitani H, Bannai HP, Nonaka M (2011) Retained orthologous relationships of the MHC class I genes during euteleost evolution. Mol Biol Evol 28:3099–3112PubMedCrossRefGoogle Scholar
  56. Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21PubMedGoogle Scholar
  57. Piontkivska H, Nei M (2003) Birth-and-death evolution in primate MHC class I genes: divergence time estimates. Mol Biol Evol 20:601–609PubMedCrossRefGoogle Scholar
  58. Promerová M, Allbrecht T, Bryja J (2009) Extremely high MHC class I variation in a population of a long-distance migrant, the Scarlet Rosefinch (Carpodacus erythrinus). Immunogenetics 61:451–461PubMedCrossRefGoogle Scholar
  59. Read MA, Grigg GC, Irwin SR, Shanahan D, Franklin CE (2007) Satellite tracking reveals long distance coastal travel and homing by translocated estuarine crocodiles, Crocodylus porosus. PLoS ONE 2:e949PubMedCrossRefGoogle Scholar
  60. Richardson DS, Westerdahl H (2003) MHC diversity in two Acrocephalus species: the outbred great reed warbler and the inbred Seychelles warbler. Mol Ecol 12:3523–3529PubMedCrossRefGoogle Scholar
  61. RIRDC (2005) New Animal Products R&D Plan 2006–2009. Publication no. 05/153. Vol. publication no. 05/153Google Scholar
  62. Russello M, Brazaitis P, Gratten J, Watkins-Colwell G, Caccone A (2007) Molecular assessment of the genetic integrity, distinctiveness, and phylogeographic context of saltwater crocodiles (Crocodylus porosus) on Palau. Conserv Genet 8:777–787CrossRefGoogle Scholar
  63. Saper M, Bjorkman P, Wiley D (1991) Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 Å resolution. J Mol Biol 219:277–319PubMedCrossRefGoogle Scholar
  64. Schut E, Rivero-de Aguilar J, Merino S, Magrath MJL, Komdeur J, Westerdahl H (2011) Characterization of MHC-I in the blue tit (Cyanistes caeruleus) reveals low levels of genetic diversity and trans-population evolution across European populations. Immunogenetics 63:531–542PubMedCrossRefGoogle Scholar
  65. Shiina T, Shimizu S, Hosomichi K, Kohara S, Watanabe S, Hanzawa K, Beck S, Kulski JK, Inoko H (2004) Comparative genomic analysis of two avian (quail and chicken) MHC regions. J Immunol 172:6751–6763PubMedGoogle Scholar
  66. Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16–33PubMedCrossRefGoogle Scholar
  67. Strandh M, Lannefors M, Bonadonna F, Westerdahl H (2011) Characterization of MHC class I and II genes in a subantarctic seabird, the blue petrel, Halobaena caerulea (Procellariiformes). Immunogenetics 63:653–666PubMedCrossRefGoogle Scholar
  68. Takahashi K, Rooney AP, Nei M (2000) Origins and divergence times of mammalian class II MHC gene clusters. J Hered 91:198–204PubMedCrossRefGoogle Scholar
  69. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  70. Webb GJW, Whitehead PJ, Manolis SC (1987) Crocodile management in the Northern Territory of Australia. In: Webb GJW, Manolis SC, Whitehead PJ (eds) Wildlife management: crocodiles and alligators. Beatty, Sydney, pp 107–124Google Scholar
  71. Wegner KM, Reusch TBH, Kalbe M (2003) Multiple infections drive major histocompatibility complex polymorphism in the wild. J Evol Biol 16:224–232PubMedCrossRefGoogle Scholar
  72. Westerdahl H, Wittzel H, Von Schantz T, Bensch S (2004) MHC class I typing in a songbird with numerous loci and high polymorphism using motif-specific PCR and DGGE. Heredity 92:534–542PubMedCrossRefGoogle Scholar
  73. Wilson DJ, McVean G (2006) Estimating diversifying selection and functional constraint in the presence of recombination. Genetics 172:1411–1425PubMedCrossRefGoogle Scholar
  74. Worley K, Gillingham M, Jensen P, Kennedy LJ, Pizzari T, Kaufman J, Richardson DS (2008) Single locus typingof MHC class I and class II B loci in a population of red jungle fowl. Immunogenetics 60:233–247PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Weerachai Jaratlerdsiri
    • 1
  • Sally R. Isberg
    • 1
    • 2
  • Damien P. Higgins
    • 3
  • Jaime Gongora
    • 1
  1. 1.Faculty of Veterinary Science, RMC Gunn BuildingUniversity of SydneySydneyAustralia
  2. 2.Porosus Pty. Ltd.PalmerstonAustralia
  3. 3.Faculty of Veterinary Science, McMaster BuildingUniversity of SydneySydneyAustralia

Personalised recommendations