, Volume 64, Issue 6, pp 435–445 | Cite as

Constraints on haplotype structure and variable gene frequencies suggest a functional hierarchy within cattle MHC class I

  • Gemma F. Codner
  • James Birch
  • John A. Hammond
  • Shirley A. Ellis
Original Paper


Six major histocompatibility complex (MHC) classical class I genes have been identified in cattle, and up to three of these are expressed in variable combinations on different haplotypes. The origin and functional significance of this genetic complexity is unknown. However, an improved assembly of the cattle genome, an expanded database of full-length cDNA sequences and high-resolution frequency data concerning expressed class I genes in an economically important cattle breed combine to provide a new opportunity to study the significance of cattle MHC class I diversity. Analysis of these new data supports assignment of alleles to six discrete genes and further shows that all these classical genes share a common ancestor with a single non-classical gene, NC1. While haplotype structure is variable, with thirteen gene configurations identified, there are nevertheless clear constraints relating to both the number and combination of genes. Haplotypes expressing two classical genes are most frequently observed, and the classical class I gene 2 is almost invariably present. The frequency data support the dominance of gene 2, showing that close to 100 % of individuals carry at least one copy. This indicates a hierarchy in the functional importance of particular genes and haplotype structures. Haplotype frequency in cattle populations is therefore likely to impact on differential disease susceptibilities. This knowledge will be important for development of informed breeding strategies aimed at increasing the ability of cattle to survive in the face of future unpredictable pathogen exposure.


Cattle MHC class I genes Haplotype diversity MHC gene frequency Holstein–Friesian 



This work was funded by the Biotechnology and Biological Sciences Research Council, UK (BBSRC) including grant (BBS/E/I/00001410).

Supplementary material

251_2012_612_MOESM1_ESM.pdf (235 kb)
ESM 1 (PDF 235 kb)


  1. Araibi EH, Marchetti B, Dornan ES, Ashrafi GH, Dobromylskyj M, Ellis SA, Campo MS (2006) The E5 oncoprotein of BPV-4 does not interfere with the biosynthetic pathway of non-classical MHC class I. Virology 353:174–183PubMedCrossRefGoogle Scholar
  2. Archibald SD (2002) Analysis and mapping of the bovine MHC class I region. PhD thesis, University of Reading, UKGoogle Scholar
  3. Balakrishnan CN, Ekblom R, Völker M, Westerdahl H, Godinez R, Kotkiewicz H, Burt DW, Graves T, Griffin DK, Warren WC, Edwards SV (2010) Gene duplication and fragmentation in the zebra finch major histocompatibility complex. BMC Biol 8:29PubMedCrossRefGoogle Scholar
  4. Beja-Pereira A, Caramelli D, Lalueza-Fox C, Vernesi C, Ferrand N, Casoli A, Goyache F, Royo LJ, Conti S, Lari M, Martini A, Ouragh L, Magid A, Atash A, Zsolnai A, Boscato P, Triantaphylidis C, Ploumi K, Sineo L, Mallegni F, Taberlet P, Erhardt G, Sampietro L, Bertranpetit J, Barbujani G, Luikart G, Bertorelle G (2006) The origin of European cattle: evidence from modern and ancient DNA. Proc Natl Acad Sci U S A 103(21):8113–8118PubMedCrossRefGoogle Scholar
  5. Berry DP, Bermingham ML, Good M, More SJ (2011) Genetics of animal health and disease in cattle. Ir Vet J 64(1):5PubMedCrossRefGoogle Scholar
  6. Birch J, Ellis SA (2007) Complexity in the cattle CD94/NKG2 gene families. Immunogenetics 59:273–280PubMedCrossRefGoogle Scholar
  7. Birch J, Murphy L, Machugh ND, Ellis SA (2006) Generation and maintenance of diversity in the cattle MHC class I region. Immunogenetics 58:670–679PubMedCrossRefGoogle Scholar
  8. Birch J, Codner G, Guzman E, Ellis SA (2008) Genomic location and characterisation of nonclassical MHC class I genes in cattle. Immunogenetics 60(5):267–273PubMedCrossRefGoogle Scholar
  9. Bodmer WF (1987) The HLA system: structure and function. J Clin Pathol 40:948–958PubMedCrossRefGoogle Scholar
  10. Bonhomme M, Doxiadis GG, Heijmans CM, Vervoort V, Otting N, Bontrop RE, Crouau-Roy B (2008) Genomic plasticity of the immune-related Mhc class I B region in macaque species. BMC Genomics 9:514PubMedCrossRefGoogle Scholar
  11. Braud VM, Allan DS, O’Callaghan CA, Soderstrom K, D’Andrea A, Ogg GS, Lazetic S, Young NT, Bell JI, Phillips JH, Lanier LL, McMichael AJ (1998) HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391:795–799PubMedCrossRefGoogle Scholar
  12. Charron MV, Seegers H, Langlais M, Ezanno P (2011) Seasonal spread and control of Bluetongue in cattle. J Theor Biol 291:1–9PubMedCrossRefGoogle Scholar
  13. Codner GF (2010) Assessing MHC class I diversity in dairy cattle populations. PhD thesis, School of Veterinary Medicine, University of Glasgow, UKGoogle Scholar
  14. Codner GF, Stear MJ, Reeve R, Matthews L, Ellis SA (2011) Selective forces shaping diversity in the class I region of the major histocompatibility complex in dairy cattle. Anim Genet. doi: 10.1111/j.1365-2052.2011.02239.x
  15. Davies CJ, Joosten I, Bernoco D, Arriens MA, Bester J, Ceriotti G, Ellis S, Hensen EJ, Hines HC, Horin P et al (1994) Polymorphism of bovine MHC class I genes. Joint report of the Fifth International Bovine Lymphocyte Antigen (BoLA) Workshop, Interlaken, Switzerland, 1 August 1992. Eur J Immunogenet 21(4):239–258PubMedCrossRefGoogle Scholar
  16. Di Palma F, Archibald SD, Young JR, Ellis SA (2002) A BAC contig of approximately 400 kb contains the classical class I MHC genes of cattle. Eur J Immunogenet 29:65–68PubMedCrossRefGoogle Scholar
  17. Dobromylskyj M, Ellis SA (2007) Complexity in cattle KIR genes: transcription and genome analysis. Immunogenetics 59:463–472PubMedCrossRefGoogle Scholar
  18. Dobromylskyj M, Connelley T, Hammond JA, Ellis SA (2009) Cattle Ly49 is polymorphic. Immunogenetics 61:789–795CrossRefGoogle Scholar
  19. Doxiadis GGM, de Groot N, Otting N, Blokhuis JH, Bontrop RE (2011) Genomic plasticity of the MHC class I A region in rhesus macaques: extensive haplotype diversity at the population level as revealed by microsatellites. Immunogenetics 63:73–83PubMedCrossRefGoogle Scholar
  20. Ellis SA, Holmes EC, Staines KA, Smith KB, Stear MJ, McKeever DJ, MacHugh ND, Morrison WI (1999) Variation in the number of expressed MHC genes in different cattle class I haplotypes. Immunogenetics 50:319–328PubMedCrossRefGoogle Scholar
  21. Gaddum RM, Cook RS, Furze JM, Ellis SA, Taylor G (2003) Recognition of bovine respiratory syncytial virus proteins by bovine CD8+ T lymphocytes. Immunology 108(2):220–229PubMedCrossRefGoogle Scholar
  22. Goddeeris BM, Morrison WI, Teale AJ, Bensaid A, Baldwin CL (1986) Bovine cytotoxic T-cell clones specific for cells infected with the protozoan parasite Theileria parva: parasite strain specificity and class I major histocompatibility complex restriction. Proc Natl Acad Sci U S A 83(14):5238–5242PubMedCrossRefGoogle Scholar
  23. Graham SP, Pellé R, Yamage M, Mwangi DM, Honda Y, Mwakubambanya RS, de Villiers EP, Abuya E, Awino E, Gachanja J, Mbwika F, Muthiani AM, Muriuki C, Nyanjui JK, Onono FO, Osaso J, Riitho V, Saya RM, Ellis SA, McKeever DJ, MacHugh ND, Gilbert SC, Audonnet JC, Morrison WI, van der Bruggen P, Taracha EL (2008) Characterization of the fine specificity of bovine CD8 T-cell responses to defined antigens from the protozoan parasite Theileria parva. Infect Immun 76(2):685–694PubMedCrossRefGoogle Scholar
  24. Guethlein LA, Abi-Rached L, Hammond JA, Parham P (2007) The expanded cattle KIR genes are orthologous to the conserved single-copy KIR3DX1 gene of primates. Immunogenetics 59:517–522PubMedCrossRefGoogle Scholar
  25. Guzman E, Taylor G, Charleston B, Skinner MA, Ellis SA (2008) An MHC-restricted CD8+ T-cell response is induced in cattle by foot-and-mouth disease virus (FMDV) infection and also following vaccination with inactivated FMDV. J Gen Virol 89(3):667–675PubMedCrossRefGoogle Scholar
  26. Guzman E, Taylor G, Charleston B, Ellis SA (2010) Induction of a cross-reactive CD8(+) T cell response following foot-and-mouth disease virus vaccination. J Virol 84(23):12375–12384PubMedCrossRefGoogle Scholar
  27. Hayes BJ, Visscher PM, Mcpartlan HC, Goddard ME (2003) Novel multilocus measure of linkage disequilibrium to estimate past effective population size. Genome Res 13:635–643PubMedCrossRefGoogle Scholar
  28. Holmes EC, Ellis SA (1999) Evolutionary history of MHC class I genes in the mammalian order Perissodactyl. J Mol Evol 49:316–324PubMedCrossRefGoogle Scholar
  29. Holmes EC, Roberts AFC, Staines KA, Ellis SA (2003) Evolution of MHC class I genes in Cetartiodactyls. Immunogenetics 55:193–202PubMedCrossRefGoogle Scholar
  30. Kappler JW, Roehm N, Marrack P (1987) T cell tolerance by clonal elimination in the thymus. Cell 49:273–280PubMedCrossRefGoogle Scholar
  31. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9(4):286–298PubMedCrossRefGoogle Scholar
  32. Kaufman J, Völk H, Wallny HJ (1995) A “minimal essential Mhc” and an “unrecognized Mhc”: two extremes in selection for polymorphism. Immunol Rev 143:63–88PubMedCrossRefGoogle Scholar
  33. Kristensen TN, Sorensen AC (2005) Inbreeding—lessons from animal breeding, evolutionary biology and conservation genetics. Anim Sci 80:121–133Google Scholar
  34. Lazzari G, Colleoni S, Duchi R, Galli A, Houghton FD, Galli C (2011) Embryonic genotype and inbreeding affect preimplantation development in cattle. Reproduction 141:625–632PubMedCrossRefGoogle Scholar
  35. Macdonald IK, Harkiolaki M, Hunt L, Connelley T, Carroll AV, MacHugh ND, Graham SP, Jones EY, Morrison WI, Flower DR, Ellis SA (2010) MHC class I bound to an immunodominant Theileria parva epitope demonstrates unconventional presentation to T cell receptors. PloS Pathog 6(10):e1001149PubMedCrossRefGoogle Scholar
  36. MacHugh ND, Connelley T, Graham SP, Pelle R, Formisano P, Taracha EL, Ellis SA, McKeever DJ, Burrells A, Morrison WI (2009) CD8+ T-cell responses to Theileria parva are preferentially directed to a single dominant antigen: Implications for parasite strain-specific immunity. Eur J Immunol 39(9):2459–2469PubMedCrossRefGoogle Scholar
  37. McQueen KL, Wilhelm BT, Harden KD, Mager DL (2002) Evolution of NK receptors: a single Ly49 and multiple KIR genes in the cow. Eur J Immunol 32:810–817PubMedCrossRefGoogle Scholar
  38. Miltiadou D, Ballingall KT, Ellis SA, Russell GC, McKeever DJ (2005) Haplotype characterization of transcribed ovine major histocompatibility complex (MHC) class I genes. Immunogenetics 57:499–509PubMedCrossRefGoogle Scholar
  39. Morrison WI, Taylor G, Gaddum RM, Ellis SA (1999) Contribution of advances in immunology to vaccine development. Adv Vet Med 41:181–195PubMedCrossRefGoogle Scholar
  40. Narciandi F, Lloyd AT, Chapwanya A, C OF, Meade KG (2011) Reproductive tissue-specific expression profiling and genetic variation across a 19 gene bovine beta-defensin cluster. Immunogenetics 63:641–651Google Scholar
  41. Nei M, Gu X, Sitnikova Y (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci U S A 94:7799–7806PubMedCrossRefGoogle Scholar
  42. Otting N, Heijmans CM, Noort RC, de Groot NG, Doxiadis GG, van Rood JJ, Watkins DI, Bontrop RE (2005) Unparalleled complexity of the MHC class I region in rhesus macaques. Proc Natl Acad Sci U S A 102(5):1626–1631PubMedCrossRefGoogle Scholar
  43. Parham P, Adams EJ, Arnett KL (1995) The origins of HLA-A, B, C polymorphism. Immunol Rev 143:141–180PubMedCrossRefGoogle Scholar
  44. Shook GE (2006) Major advances in determining appropriate selection goals. J Dairy Sci 89(4):1349–1361PubMedCrossRefGoogle Scholar
  45. Stear MJ, Bishop SC, Mallard BA, Raadsma H (2001) The sustainability, feasibility and desirability of breeding livestock for disease resistance. Res Vet Sci 71:1–7PubMedCrossRefGoogle Scholar
  46. Storset AK, Slettedal IO, Williams JL, Law A, Dissen E (2003) NK cell receptors in cattle: a bovine KIR-like receptor multigene family contains members with divergent signalling motifs. Eur J Immunol 33:980–990PubMedCrossRefGoogle Scholar
  47. Townsend ARM, Gotch FM, Davey J (1985) Cytotoxic T cells recognise fragments of the influenza nucleoprotein. Cell 42:457–467PubMedCrossRefGoogle Scholar
  48. Trowsdale J (2001) Genetic and functional relationships between MHC and NK receptor genes. Immunity 15(3):363–374PubMedCrossRefGoogle Scholar
  49. Vilches C, Parham P (2002) KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol 20:217–251PubMedCrossRefGoogle Scholar
  50. Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D, Hanrahan F, Pertea G, Van Tassell CP, Sonstegard TS, Marcais G, Roberts M, Subramanian P, Yorke JA, Salzberg SL (2009) A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol 10(4):R42PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Gemma F. Codner
    • 1
    • 2
  • James Birch
    • 1
  • John A. Hammond
    • 1
  • Shirley A. Ellis
    • 1
  1. 1.Livestock Infectious Disease ProgrammeInstitute for Animal HealthComptonUK
  2. 2.Mary Lyon Centre, MRC HarwellDidcotUK

Personalised recommendations