, Volume 64, Issue 4, pp 303–311 | Cite as

Evolution of the porcine (Sus scrofa domestica) immunoglobulin kappa locus through germline gene conversion

  • John C. Schwartz
  • Marie-Paule Lefranc
  • Michael P. Murtaugh
Original Paper


Immunoglobulin (IG) gene rearrangement and expression are central to disease resistance and health maintenance in animals. The IG kappa (IGK) locus in swine (Sus scrofa domestica) contributes to approximately half of all antibody molecules, in contrast to many other Cetartiodactyla, whose members provide the majority of human dietary protein and in which kappa locus utilization is limited. The porcine IGK variable locus is 27.9 kb upstream of five IG kappa J genes (IGKJ) which are separated from a single constant gene (IGKC) by 2.8 kb. Fourteen variable genes (IGKV) were identified, of which nine are functional and two are open reading frame (ORF). Of the three pseudogenes, IGKV3-1 contains a frameshift and multiple stop codons, IGKV7-2 contains multiple stop codons, and IGKV2-5 is missing exon 2. The nine functional IGKV genes are phylogenetically related to either the human IGKV1 or IGKV2 subgroups. IGKV2 subgroup genes were found to be dominantly expressed. Polymorphisms were identified on overlapping BACs derived from the same individual such that 11 genes contain amino acid differences. The most striking allelic differences are present in IGKV2 genes, which contain as many as 16 amino acid changes between alleles, the majority of which are in complementarity determining region (CDR) 1. In addition, many IGKV2 CDR1 are shared between genes but not between alleles, suggesting extensive diversification of this locus through gene conversion.


Sus scrofa Porcine Light chain kappa Polymorphism Gene conversion 



We thank Erin Babineau for excellent technical assistance, and Dr. Jane Loveland for her generous review of the manuscript. This work was supported by a grant from the National Pork Board (10–139).


  1. Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Archibald AL, Bolund L, Churcher C, Fredholm M, Groenen MAM, Harlizius B, Lee KT, Milan D, Rogers J, Rothschild MF, Uenishi H, Wang J, Schook LB, the Swine Genome Sequencing Consortium (2010) Pig genome sequence—analysis and publication strategy. BMC Genomics 11:438PubMedCrossRefGoogle Scholar
  3. Bentley DL, Rabbitts TH (1983) Evolution of V genes: evidence indicating that recently duplicated human VK sequences have diverged by gene conversion. Cell 32:181–189PubMedCrossRefGoogle Scholar
  4. Butler JE, Sun J, Wertz N, Sinkora M (2006a) Antibody repertoire development in swine. Dev Comp Immunol 30:199–221PubMedCrossRefGoogle Scholar
  5. Butler JE, Weber P, Wertz N (2006b) Antibody repertoire development in fetal and neonatal piglets. XIII. Hybrid VH genes and the preimmune repertoire revisited. J Immunol 177:5459–5470PubMedGoogle Scholar
  6. Butler JE, Wertz N, Sun J, Wang H, Lemke C, Chardon P, Piumi F, Wells K (2005) The pre-immune variable kappa repertoire of swine is selectively generated from certain subfamilies of Vκ2 and one Jκ gene. Vet Immunol Immunop 108:127–137CrossRefGoogle Scholar
  7. Butler JE, Wertz N, Sun J, Wang H, Chardon P, Piumi F, Wells K (2004) Antibody repertoire development in fetal and neonatal pigs.VII. Characterization of the preimmune kappa light chain repertoire. J Immunol 173:6794–6805PubMedGoogle Scholar
  8. Cohen JB, Givol D (1983) Allelic immunoglobulin VH genes in two mouse strains: possible germline gene recombination. EMBO J 2:2013–2018PubMedGoogle Scholar
  9. Das S, Nikolaidis N, Nei M (2009) Genomic organization and evolution of immunoglobulin kappa gene enhancers and kappa deleting element in mammals. Mol Immunol 46:3171–3177PubMedCrossRefGoogle Scholar
  10. Eguchi-Ogawa T, Wertz N, Sun XZ, Puimi F, Uenishi H, Wells K, Chardon P, Tobin GJ, Butler JE (2010) Antibody repertoire development in fetal and neonatal piglets. XI. The relationship of variable heavy chain gene usage and the genomic organization of the variable heavy chain locus. J Immunol 184:3734–3742PubMedCrossRefGoogle Scholar
  11. Ekman A, Niku M, Liljavirta J, Iivanainen A (2009) Bos taurus genome sequence reveals the assortment of immunoglobulin and surrogate light chain genes in domestic cattle. BMC Immunol 10:22PubMedCrossRefGoogle Scholar
  12. Emorine L, Max EE (1983) Structural analysis of a rabbit immunoglobulin kappa 2 J–C locus reveals multiple deletions. Nucl Acids Res 11:8877–8890PubMedCrossRefGoogle Scholar
  13. Giudicelli V, Chaume D, Lefranc M-P (2005) IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucl Acids Res 33:D256–261PubMedCrossRefGoogle Scholar
  14. Flanagan JG, Lefranc M-P, Rabbitts TH (1984) Mechanisms of divergence and convergence of the human immunoglobulin alpha1 and alpha2 constant region gene sequences. Cell 36:681–688PubMedCrossRefGoogle Scholar
  15. Gorodkin J, Cirera S, Hedegaard J, Gilchrist MJ, Panitz F, Jørgensen C, Scheibye-Knudsen K, Arvin T, Lumholdt S, Sawera M, Green T, Nielsen BJ, Havgaard JH, Rosenkilde C, Wang J, Li H, Li R, Liu B, Hu S, Dong W, Li W, Yu J, Wang J, Stærfeldt H, Wernersson R, Madsen LB, Thomsen B, Hornshøj H, Bujie Z, Wang X, Wang X, Bolund L, Brunak S, Yang H, Bendixen C, Fredholm M (2007) Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1,021,891 expressed sequence tags. Genome Biol 8:R45PubMedCrossRefGoogle Scholar
  16. Hieter PA, Max EE, Seidman JG, Maizel JV, Leder P (1980) Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments. Cell 22:197–207PubMedCrossRefGoogle Scholar
  17. Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T, Durbin R, Eyras E, Gilbert J, Hammond M, Huminiecki L, Kasprzyk A, Lehvaslaiho H, Lijnzaad P, Melsopp C, Mongin E, Pettett R, Pocock M, Potter S, Rust A, Schmidt E, Searle S, Slater G, Smith J, Spooner W, Stabenau A, Stalker J, Stupka E, Ureta-Vidal A, Vastrik I, Clamp M (2002) The Ensembl genome database project. Nucleic Acids Res 30:38–41Google Scholar
  18. Huck S, Lefranc G, Lefranc M-P (1989) A human immunoglobulin IGHG3 allele (Gmb0, b1, c3, c5, u) with an IGHG4 converted region and three hinge exons. Immunogenetics 30:250–257PubMedCrossRefGoogle Scholar
  19. Humphray SJ, Scott CE, Clark R, Marron B, Bender C, Camm N, Davis J, Jenks A, Noon A, Patel M, Sehra H, Yang F, Rogatcheva MB, Milan D, Chardon P, Rohrer G, Nonneman D, de Jong P, Meyers SN, Archibald A, Beever JE, Schook LB, Rogers J (2007) A high utility map of the pig genome. Genome Biol 8:R139PubMedCrossRefGoogle Scholar
  20. Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinform 8:460CrossRefGoogle Scholar
  21. Kawasaki K, Minoshima S, Nakato E, Shibuya K, Shintani A, Asakawa S, Sasaki T, Klobeck HG, Combriato G, Zachau HG, Shimizu N (2001) Evolutionary dynamics of the human immunoglobulin κ locus and the germline repertoire of the Vκ genes. Eur J Immunol 31:1017–1028PubMedCrossRefGoogle Scholar
  22. Kim DR, Oettinger MA (2000) V(D)J recombination: site-specific cleavage and repair. Mol Cells 10:367–374PubMedGoogle Scholar
  23. Kurosawa K, Ohta K (2011) Genetic diversification by somatic gene conversion. Genes 2:48–58CrossRefGoogle Scholar
  24. Lammers BM, Beaman KD, Kim YB (1991) Sequence analysis of porcine immunoglobulin light chain cDNAs. Mol Immunol 28:877–880PubMedCrossRefGoogle Scholar
  25. Lefranc M-P (2007) WHO-IUIS nomenclature subcommittee for immunoglobulins and T cell receptors report. Immunogenetics 59:899–902PubMedCrossRefGoogle Scholar
  26. Lefranc M-P (2008) WHO-IUIS Nomenclature Subcommittee for Immunoglobulins and T cell receptors report. Immunoglobulins and T cell receptors report August 2007, 13th International Congress of Immunology, Rio de Janeiro, Brazil. Dev Comp Immunol 32:461–463PubMedCrossRefGoogle Scholar
  27. Lefranc M-P, Lefranc G (2001) The immunoglobulin FactsBook. Academic, London, pp 1–458Google Scholar
  28. Lefranc M-P, Helal AN, De Lange G, Chaabani H, Van Loghem E, Lefranc G (1986) Gene conversion in human immunoglobulin gamma locus shown by unusual location of IgG allotypes. FEBS Letters 196:96–102PubMedCrossRefGoogle Scholar
  29. Lefranc M-P, Pommié C, Ruiz M, Giudicelli V, Foulquier E, Truong L, Thouvenin-Contet V, Lefranc G (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27:55–77PubMedCrossRefGoogle Scholar
  30. Lefranc M-P, Pommié C, Kaas Q, Duprat E, Bosc N, Guiraudou D, Jean C, Ruiz M, Da Piédade I, Rouard M, Foulquier E, Thouvenin V, Lefranc G (2005) IMGT unique numbering for immunoglobulin and T cell receptor constant domains and Ig superfamily C-like domains. Dev Comp Immunol 29:185–203PubMedCrossRefGoogle Scholar
  31. Lefranc M-P, Giudicelli V, Ginestoux C, Jabado-Michaloud J, Folch G, Bellahcene F, Wu Y, Gemrot E, Brochet X, Lane J, Regnier L, Ehrenmann F, Lefranc G, Duroux P (2009) IMGT®, the international ImMunoGeneTics information system®. Nucl Acids Res 37:D1006–1012PubMedCrossRefGoogle Scholar
  32. McBlane JF, Van Gent DC, Ramsden DA, Romeo C, Cuomo CA, Gellert M, Oettinger MA (1995) Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83:387–395PubMedCrossRefGoogle Scholar
  33. Pasman Y, Saini SS, Smith E, Kaushik AK (2010) Organization and genomic complexity of bovine λ-light chain gene locus. Vet Immunol Immunop 135:306–313CrossRefGoogle Scholar
  34. Ramsden DA, Baetz KA, Wu GE (1994) Conservation of sequence in recombination signal sequence spacers. Nucleic Acids Res 22:1785–1796PubMedCrossRefGoogle Scholar
  35. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945PubMedCrossRefGoogle Scholar
  36. Schook LB, Beever JE, Rogers J, Humphray S, Archibald A, Chardon P, Milan D, Rohrer G, Eversole K (2005) Swine Genome Sequencing Consortium (SGSC): a strategic roadmap for sequencing the pig genome. Comp Funct Genom 6:251–255CrossRefGoogle Scholar
  37. Sheppard HW, Gutman GA (1981) Allelic forms of rat kappa chain genes: evidence for strong selection at the level of nucleotide sequence. Proc Natl Acad Sci USA 78:7064–7068PubMedCrossRefGoogle Scholar
  38. Siminovitch KA, Bakhshi A, Goldman P, Korsmeyer SJ (1985) A uniform deleting element mediates the loss of kappa genes in human B cells. Nature 316:260–262PubMedCrossRefGoogle Scholar
  39. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123PubMedCrossRefGoogle Scholar
  40. Wu TT, Kabat EA (1970) An analysis of the sequences of the variable regions of Bence Jones proteins and their myeloma light chains and their implications for antibody complementarity. J Exp Med 132:211–250PubMedCrossRefGoogle Scholar
  41. Yerle M, Lahbib-Mansais Y, Pinton P, Robic A, Goureau A, Milan D, Gellin J (1997) The cytogenetic map of the domestic pig (Sus scrofa domestica). Mamm Genome 8:592–607PubMedCrossRefGoogle Scholar
  42. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • John C. Schwartz
    • 1
  • Marie-Paule Lefranc
    • 2
  • Michael P. Murtaugh
    • 1
  1. 1.Department of Veterinary and Biomedical SciencesUniversity of MinnesotaSt. PaulUSA
  2. 2.IMGT®, the international ImMunoGeneTics information system®, Laboratoire d’ImmunoGénétique Moléculaire and Institut de Génétique HumaineUniversité MontpellierMontpellierFrance

Personalised recommendations