Advertisement

Immunogenetics

, Volume 64, Issue 4, pp 279–287 | Cite as

The IgE gene in primates exhibits extraordinary evolutionary diversity

  • Pheidias C. Wu
  • Jiun-Bo Chen
  • Shoji Kawamura
  • Christian Roos
  • Stefan Merker
  • Chih-Chin Shih
  • Ban-Dar Hsu
  • Carmay Lim
  • Tse Wen Chang
Original Paper

Abstract

Membrane-bound IgE (mIgE) on B lymphocytes is essential for IgE production. Earlier studies showed that the ε chain of mIgE (mε) on human B cells has a “long” isoform, with an extra “CεmX” domain of 52 amino acid (aa) residues between the CH4 domain and the membrane-anchor segment, as compared to the conventional “short” isoform. Because CεmX provides an antigenic site for targeting IgE-expressing B cells to down-regulate IgE production in patients with allergy, analysis of CεmX in various animals is of great interest. Hence, we analyzed the ε Ig gene, in particular, its membrane exon regions encoding the membrane anchor peptide segment and CεmX domain, of 26 species of the order Primates and 12 species of seven non-Primate orders using data obtained experimentally or retrieved from GenBank. Our analyses reveal the unexpected finding that the genes of three extant tarsier species do not contain the membrane exons for mIgE. Another striking finding is that early evolved Strepsirhini primates such as lemurs and lorises do not have gene segments for the long isoform, whereas New World monkeys such as marmosets and squirrel monkeys allow the transcription of only the long isoform. In Old World monkeys and apes, including humans, the ε gene allows the transcription of both isoforms. This work thus reveals the dramatic differences in the gene segment encoding the mε C terminal region among the four major primate lineages: the Strepsirhini primates, the tarsiers, New World monkeys, and Old World monkeys and apes/humans.

Keywords

Membrane-bound IgE ε Immunoglobulin gene Membrane exons Primates Tarsiers Diversity 

Notes

Acknowledgments

This work is supported by a grant, NSC99-2320-B-001-006-MY3, from the National Science Council, Taiwan. We thank Dr. George Perry of Arizona State University for the gift of DNA samples from two aye-ayes and Dr. Harry Wilson for editing the manuscript.

Conflict of interest

The authors have no financial conflicts of interest.

Supplementary material

251_2011_586_MOESM1_ESM.pdf (63 kb)
Supplementary Table S1 GenBank entries and sequences of IGHE gene specific primer (PDF 62 kb)

References

  1. Achatz G, Nitschke L, Lamers MC (1997) Effect of transmembrane and cytoplasmic domains of IgE on the IgE response. Science 276(5311):409–411PubMedCrossRefGoogle Scholar
  2. Achatz G, Lamers M, Crameri R (2008) Membrane bound IgE: the key receptor to restrict high IgE levels. Open Immun J 1:25–32CrossRefGoogle Scholar
  3. Anand S, Batista FD, Tkach T, Efremov DG, Burrone OR (1997) Multiple transcripts of the murine immunoglobulin epsilon membrane locus are generated by alternative splicing and differential usage of two polyadenylation sites. Mol Immunol 34(2):175–183PubMedCrossRefGoogle Scholar
  4. Aveskogh M, Hellman L (1995) A single major transcript encodes the membrane-bound form of rat immunoglobulin E. Scand J Immunol 42(5):535–539PubMedCrossRefGoogle Scholar
  5. Batista FD, Efremov DG, Burrone OR (1995) Characterization and expression of alternatively spliced IgE heavy chain transcripts produced by peripheral blood lymphocytes. J Immunol 154(1):209–218PubMedGoogle Scholar
  6. Batista FD, Anand S, Presani G, Efremov DG, Burrone OR (1996) The two membrane isoforms of human IgE assemble into functionally distinct B cell antigen receptors. J Exp Med 184(6):2197–2205PubMedCrossRefGoogle Scholar
  7. Brightbill HD, Jeet S, Lin Z, Yan D, Zhou M, Tan M, Nguyen A, Yeh S, Delarosa D, Leong SR, Wong T, Chen Y, Ultsch M, Luis E, Ramani SR, Jackman J, Gonzalez L, Dennis MS, Chuntharapai A, DeForge L, Meng YG, Xu M, Eigenbrot C, Lee WP, Refino CJ, Balazs M, Wu LC (2010) Antibodies specific for a segment of human membrane IgE deplete IgE-producing B cells in humanized mice. J Clin Invest 120(6):2218–2229PubMedCrossRefGoogle Scholar
  8. Broide DH, Finkelman F, Bochner BS, Rothenberg ME (2011) Advances in mechanisms of asthma, allergy, and immunology in 2010. J Allergy Clin Immunol 127(3):689–695PubMedCrossRefGoogle Scholar
  9. Burset M, Seledtsov IA, Solovyev VV (2001) SpliceDB: database of canonical and non-canonical mammalian splice sites. Nucleic Acids Res 29(1):255–259PubMedCrossRefGoogle Scholar
  10. Busse WW, Morgan WJ, Gergen PJ, Mitchell HE, Gern JE, Liu AH, Gruchalla RS, Kattan M, Teach SJ, Pongracic JA, Chmiel JF, Steinbach SF, Calatroni A, Togias A, Thompson KM, Szefler SJ, Sorkness CA (2011) Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med 364(11):1005–1015PubMedCrossRefGoogle Scholar
  11. Capron A, Dessaint JP (1992) Immunologic aspects of schistosomiasis. Annu Rev Med 43:209–218PubMedCrossRefGoogle Scholar
  12. Casale TB, Busse WW, Kline JN, Ballas ZK, Moss MH, Townley RG, Mokhtarani M, Seyfert-Margolis V, Asare A, Bateman K, Deniz Y (2006) Omalizumab pretreatment decreases acute reactions after rush immunotherapy for ragweed-induced seasonal allergic rhinitis. J Allergy Clin Immunol 117(1):134–140PubMedCrossRefGoogle Scholar
  13. Chang TW, Wu PC, Hsu CL, Hung AF (2007) Anti-IgE antibodies for the treatment of IgE-mediated allergic diseases. Adv Immunol 93:63–119PubMedCrossRefGoogle Scholar
  14. Chen JB, Wu PC, Hung AF, Chu CY, Tsai TF, Yu HM, Chang HY, Chang TW (2010) Unique epitopes on C epsilon mX in IgE-B cell receptors are potentially applicable for targeting IgE-committed B cells. J Immunol 184(4):1748–1756PubMedCrossRefGoogle Scholar
  15. Cooper PJ, Ayre G, Martin C, Rizzo JA, Ponte EV, Cruz AA (2008) Geohelminth infections: a review of the role of IgE and assessment of potential risks of anti-IgE treatment. Allergy 63(4):409–417PubMedCrossRefGoogle Scholar
  16. Cruz AA, Lima F, Sarinho E, Ayre G, Martin C, Fox H, Cooper PJ (2007) Safety of anti-immunoglobulin E therapy with omalizumab in allergic patients at risk of geohelminth infection. Clin Exp Allergy 37(2):197–207PubMedCrossRefGoogle Scholar
  17. Hellman L (1993) Characterization of four novel epsilon chain mRNA and a comparative analysis of genes for immunoglobulin E in rodents and man. Eur J Immunol 23(1):159–167PubMedCrossRefGoogle Scholar
  18. Holgate S, Casale T, Wenzel S, Bousquet J, Deniz Y, Reisner C (2005) The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation. J Allergy Clin Immunol 115(3):459–465PubMedCrossRefGoogle Scholar
  19. Kaisho T, Schwenk F, Rajewsky K (1997) The roles of gamma 1 heavy chain membrane expression and cytoplasmic tail in IgG1 responses. Science 276(5311):412–415PubMedCrossRefGoogle Scholar
  20. Kaplan AP, Joseph K, Maykut RJ, Geba GP, Zeldin RK (2008) Treatment of chronic autoimmune urticaria with omalizumab. J Allergy Clin Immunol 122(3):569–573PubMedCrossRefGoogle Scholar
  21. Kawamura S, Kubotera N (2004) Ancestral loss of short wave-sensitive cone visual pigment in lorisiform prosimians, contrasting with its strict conservation in other prosimians. J Mol Evol 58(3):314–321PubMedCrossRefGoogle Scholar
  22. Kawamura S, Ueda S (1992) Immunoglobulin CH gene family in hominoids and its evolutionary history. Genomics 13(1):194–200PubMedCrossRefGoogle Scholar
  23. Kitamura D, Roes J, Kuhn R, Rajewsky K (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350(6317):423–426PubMedCrossRefGoogle Scholar
  24. Leung DY, Sampson HA, Yunginger JW, Burks AW Jr, Schneider LC, Wortel CH, Davis FM, Hyun JD, Shanahan WR Jr (2003) Effect of anti-IgE therapy in patients with peanut allergy. N Engl J Med 348(11):986–993PubMedCrossRefGoogle Scholar
  25. Major JG Jr, Davis FM, Liou RS, Chang TW (1996) Structural features of the extracellular portion of membrane-anchoring peptides on membrane-bound immunoglobulins. Mol Immunol 33(2):179–187PubMedCrossRefGoogle Scholar
  26. Merker S, Driller C, Perwitasari-Farajallah D, Zahner R, Zischler H (2007) Isolation and characterization of 12 microsatellite loci for population studies of Sulawesi tarsiers (Tarsius spp.). MOL ECOL NOTES 7(6):1216–1218CrossRefGoogle Scholar
  27. Merker S, Driller C, Perwitasari-Farajallah D, Pamungkas J, Zischler H (2009) Elucidating geological and biological processes underlying the diversification of Sulawesi tarsiers. Proc Natl Acad Sci USA 106(21):8459–8464PubMedCrossRefGoogle Scholar
  28. Nilsson L, Islam KB, Olafsson O, Zalcberg I, Samakovlis C, Hammarstrom L, Smith CI, Sideras P (1991) Structure of TGF-beta 1-induced human immunoglobulin C alpha 1 and C alpha 2 germ-line transcripts. Int Immunol 3(11):1107–1115PubMedCrossRefGoogle Scholar
  29. Pace E, Ferraro M, Bruno A, Chiappara G, Bousquet J, Gjomarkaj M (2011) Clinical benefits of 7 years of treatment with omalizumab in severe uncontrolled asthmatics. J Asthma 48(4):387–392PubMedCrossRefGoogle Scholar
  30. Peng C, Davis FM, Sun LK, Liou RS, Kim YW, Chang TW (1992) A new isoform of human membrane-bound IgE. J Immunol 148(1):129–136PubMedGoogle Scholar
  31. Perelman P, Johnson WE, Roos C, Seuanez HN, Horvath JE, Moreira MA, Kessing B, Pontius J, Roelke M, Rumpler Y, Schneider MP, Silva A, O'Brien SJ, Pecon-Slattery J (2011) A molecular phylogeny of living primates. PLoS Genet 7(3):e1001342PubMedCrossRefGoogle Scholar
  32. Pinot de Moira A, Fulford AJ, Kabatereine NB, Ouma JH, Booth M, Dunne DW (2010) Analysis of complex patterns of human exposure and immunity to Schistosomiasis mansoni: the influence of age, sex, ethnicity and IgE. PLoS Negl Trop Dis 4(9):e820PubMedCrossRefGoogle Scholar
  33. Reth M, Tasuku H, Frederick WA (1995) Antigen receptors on B lymphocytes. Immunoglobulin genes, 2nd edn. Academic, London, pp 129–142Google Scholar
  34. Shekelle M, Meier R, Wahyu I, Wirdateti TN (2010) Molecular phylogenetics and chronometrics of tarsiidae based on 12S mtDNA haplotypes: evidence for miocene origins of crown tarsiers and numerous species within the Sulawesian clade. Int J Primatol 31(6):1083–1106CrossRefGoogle Scholar
  35. Stone KD, Prussin C, Metcalfe DD (2010) IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 125(2 Suppl 2):S73–S80PubMedCrossRefGoogle Scholar
  36. Tashita H, Fukao T, Kaneko H, Teramoto T, Inoue R, Kasahara K, Kondo N (1998) Molecular basis of selective IgG2 deficiency. The mutated membrane-bound form of gamma2 heavy chain caused complete IGG2 deficiency in two Japanese siblings. J Clin Invest 101(3):677–681PubMedCrossRefGoogle Scholar
  37. Vernersson M, Aveskogh M, Munday B, Hellman L (2002) Evidence for an early appearance of modern post-switch immunoglobulin isotypes in mammalian evolution (II); cloning of IgE, IgG1 and IgG2 from a monotreme, the duck-billed platypus, Ornithorhynchus anatinus. Eur J Immunol 32(8):2145–2155PubMedCrossRefGoogle Scholar
  38. Vernersson M, Aveskogh M, Hellman L (2004) Cloning of IgE from the echidna (Tachyglossus aculeatus) and a comparative analysis of epsilon chains from all three extant mammalian lineages. Dev Comp Immunol 28(1):61–75PubMedCrossRefGoogle Scholar
  39. Yel L, Minegishi Y, Coustan-Smith E, Buckley RH, Trubel H, Pachman LM, Kitchingman GR, Campana D, Rohrer J, Conley ME (1996) Mutations in the mu heavy-chain gene in patients with agammaglobulinemia. N Engl J Med 335(20):1486–1493PubMedCrossRefGoogle Scholar
  40. Zhang K, Saxon A, Max EE (1992) Two unusual forms of human immunoglobulin E encoded by alternative RNA splicing of epsilon heavy chain membrane exons. J Exp Med 176(1):233–243PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Pheidias C. Wu
    • 1
    • 6
  • Jiun-Bo Chen
    • 1
  • Shoji Kawamura
    • 2
  • Christian Roos
    • 3
  • Stefan Merker
    • 4
  • Chih-Chin Shih
    • 5
  • Ban-Dar Hsu
    • 6
  • Carmay Lim
    • 7
  • Tse Wen Chang
    • 1
  1. 1.Genomics Research Center, Academia SinicaTaipeiTaiwan
  2. 2.Graduate School of Frontier Sciencesthe University of TokyoChibaJapan
  3. 3.Gene Bank of Primates and Primate Genetics LaboratoryGerman Primate CenterGöttingenGermany
  4. 4.Department of Ecology and EvolutionGoethe University FrankfurtFrankfurt am MainGermany
  5. 5.Animal DivisionTaipei ZooTaipeiTaiwan
  6. 6.Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityFrankfurt am MainTaiwan
  7. 7.Institute of Biomedical Sciences, Academia Sinica, NankangTaipeiTaiwan

Personalised recommendations