Advertisement

Immunogenetics

, Volume 64, Issue 4, pp 267–278 | Cite as

Diversity of TRIM5α and TRIMCyp sequences in cynomolgus macaques from different geographical origins

  • Neil J. Berry
  • Flavia Marzetta
  • Greg J. Towers
  • Nicola J. RoseEmail author
Original Paper

Abstract

The TRIM5α restriction factor can protect some species of monkeys, but not humans, from HIV infection. It has also emerged that some monkeys have a cyclophilin A domain retrotransposed into the TRIM5 locus resulting in the expression of a TRIMCyp protein with anti-retroviral activity. A high degree of sequence variation in the primate TRIM5 gene has been reported that varies between populations of rhesus macaques, a widely used non-human primate model of HIV/AIDS, and recently shown to correlate with susceptibility to simian immunodeficiency viruses in this species. Cynomolgus macaques are also used widely in HIV research. A non-indigenous population on Mauritius has highly restricted genetic diversity compared with macaques from Indonesia. The relative allelic diversity of TRIM5α and TRIMCyp within these two sub-populations may impact on the susceptibility of the macaques to simian immunodeficiency virus thereby influencing the outcome of studies using these monkeys. We sought to establish the genetic diversity of these alleles in cynomolgus macaques. We identified seven TRIM5α alleles in Indonesian macaques, three of which are novel, but only three in the Mauritian-origin macaques. Strikingly, 87% of Indonesian, but none of the Mauritian macaques, possessed a retrotransposed Cyp domain. A splice acceptor site single-nucleotide polymorphism that allows formation of a TRIMCyp protein was absent for the TRIM5α alleles found in the Mauritian macaques. The level of allelic diversity reported here is greater than previously proposed for cynomolgus macaque species.

Keywords

Cynomolgus Macaque TRIM5α TRIMCyp 

Notes

Acknowledgments

We gratefully acknowledge the expert assistance of veterinary and support staff. We thank Sam Wilson for designing the oligonucleotides. This work was supported by the NIHR Centre for Research in Health Protection at the Health Protection Agency, grants G0600007 and G0801172 from the UK Medical Research Council, the UCL/UCLH National Institute of Health Research Comprehensive Biomedical Research Centre and senior fellowship no. 090940 from the Wellcome Trust to GJT.

References

  1. Bimber BN, Moreland AJ, Wiseman RW, Hughes AL, O’Connor DH (2008) Complete characterization of killer Ig-like receptor (KIR) haplotypes in Mauritian cynomolgus macaques: novel insights into nonhuman primate KIR gene content and organization. J Immunol 181:6301–6308PubMedGoogle Scholar
  2. Blancher A, Bonhomme M, Crouau-Roy B, Terao K, Kitano T, Saitou N (2008) Mitochondrial DNA sequence phylogeny of 4 populations of the widely distributed cynomolgus macaque (Macaca fascicularis fascicularis). J Hered 99:254–264PubMedCrossRefGoogle Scholar
  3. Brennan G, Kozyrev Y, Kodama T, Hu SL (2007) Novel TRIM5 isoforms expressed by Macaca nemestrina. J Virol 81:12210–12217PubMedCrossRefGoogle Scholar
  4. Brennan G, Kozyrev Y, Hu SL (2008) TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis. Proc Natl Acad Sci USA 105:3569–3574PubMedCrossRefGoogle Scholar
  5. Burwitz BJ, Pendley CJ, Greene JM, Detmer AM, Lhost JJ, Karl JA, Piaskowski SM, Rudersdorf RA et al (2009) Mauritian cynomolgus macaques share two exceptionally common major histocompatibility complex class I alleles that restrict simian immunodeficiency virus-specific CD8+ T cells. J Virol 83:6011–6019PubMedCrossRefGoogle Scholar
  6. de Groot NG, Heijmans CMC, Koopman G, Verschoor EJ, Bogers WM, Bontrop RE (2011) TRIM5 allelic polymorphism in macaque species/populations of different geographic origins: its impact on SIV vaccine studies. Tissue Antigens 78:256–262PubMedCrossRefGoogle Scholar
  7. Dietrich EA, Jones-Engel L, Hu S-L (2010) Evolution of the antiretroviral restriction factor TRIMCyp in Old World primates. PLoS One 5:e14019PubMedCrossRefGoogle Scholar
  8. Dietrich EA, Brennan G, Ferguson B, Wiseman RW, O’Connor D, Hu SL (2011) Variable prevalence and functional diversity of the antiretroviral restriction factor TRIMCyp in Macaca fascicularis. J Virol 85:9956–9963PubMedCrossRefGoogle Scholar
  9. Florese RH, Wiseman RW, Venzon D, Karl JA, Demberg T, Larsen K, Flanary L, Kalyanaraman VS et al (2008) Comparative study of Tat vaccine regimens in Mauritian cynomolgus and Indian rhesus macaques: Influence of Mauritian MHC haplotypes on susceptibility/resistance to SHIV89.6P infection. Vaccine 26:3312–3321PubMedCrossRefGoogle Scholar
  10. Giraldo-Vela JP, Rudersdorf R, Chung C, Qi Y, Wallace LT, Bimber B, Borchardt GJ, Fisk DL et al (2008) The major histocompatibility complex class II alleles Mamu-DRB1*1003 and -DRB1*0306 are enriched in a cohort of simian immunodeficiency virus-infected rhesus macaque elite controllers. J Virol 82:859–870PubMedCrossRefGoogle Scholar
  11. Kanthaswamy S, Smith DG (2004) Effects of geographic origin on captive Macaca mulatta mitochondrial DNA variation. Comp Med 54:193–201PubMedGoogle Scholar
  12. Kawamoto Y, Kawamoto S, Matsubayashi K, Nozawa K, Watanabe T, Stanley MA, Perwitasari-Farajallah D (2008) Genetic diversity of longtail macaques (Macaca fascicularis) on the island of Mauritius: an assessment of nuclear and mitochondrial DNA polymorphisms. J Med Primatol 37:45–54PubMedGoogle Scholar
  13. Kirmaier A, Wu F, Newman RM, Hall LR, Morgan JS, O’Connor S, Marx PA, Meythaler M et al (2010) TRIM5 suppresses cross-species transmission of a primate immunodeficiency virus and selects for emergence of resistant variants in the new species. PLoS Biol 8:e1000462PubMedCrossRefGoogle Scholar
  14. Kondo M, Kawamoto Y, Nozawa K, Matsubayashi K, Watanabe T, Griffiths O, Stanley M-A (1993) Population genetics of crab-eating macaques (Macaca fascicularis) on the island of Mauritius. Am J Primatol 29:167–182CrossRefGoogle Scholar
  15. Krebs KC, Jin Z, Rudersdorf R, Hughes AL, O’Connor DH (2005) Unusually high frequency MHC class I alleles in Mauritian origin cynomolgus macaques. J Immunol 175:5230–5239PubMedGoogle Scholar
  16. Lawler SH, Sussman RW, Taylor LL (1995) Mitochondrial DNA of the Mauritian macaques (Macaca fascicularis): an example of the founder effect. Am J Phys Anthropol 96:133–141PubMedCrossRefGoogle Scholar
  17. Leuchte N, Berry N, Kohler B, Almond N, LeGrand R, Thorstensson R, Titti F, Sauermann U (2004) MhcDRB-sequences from cynomolgus macaques (Macaca fascicularis) of different origin. Tissue Antigens 63:529–537PubMedCrossRefGoogle Scholar
  18. Liao CH, Kuang YQ, Liu HL, Zheng YT, Su B (2007) A novel fusion gene, TRIM5-Cyclophilin A in the pig-tailed macaque determines its susceptibility to HIV-1 infection. AIDS 21(Suppl 8):S19–S26PubMedCrossRefGoogle Scholar
  19. Lim SY, Chan T, Gelman RS, Whitney JB, O’Brien KL, Barouch DH, Goldstein DB, Haynes BF et al (2010a) Contributions of Mamu-A*01 status and TRIM5 allele expression, but not CCL3L copy number variation, to the control of SIVmac251 replication in Indian-origin rhesus monkeys. PLoS Genet 6:e1000997PubMedCrossRefGoogle Scholar
  20. Lim SY, Rogers T, Chan T, Whitney JB, Kim J, Sodroski J, Letvin NL (2010b) TRIM5alpha modulates immunodeficiency virus control in rhesus monkeys. PLoS Pathog 6:e1000738PubMedCrossRefGoogle Scholar
  21. Liu HF, Wang YQ, Liao CH, Kuang YQ, Zheng YT, Su B (2005) Adaptive evolution of primate TRIM5 alpha, a gene restricting HIV-1 infection. Gene 362:109–116PubMedCrossRefGoogle Scholar
  22. Loffredo JT, Maxwell J, Qi Y, Glidden CE, Borchardt GJ, Soma T, Bean AT, Beal DR et al (2007) Mamu-B*08-positive macaques control simian immunodeficiency virus replication. J Virol 81:8827–8832PubMedCrossRefGoogle Scholar
  23. Loffredo JT, Bean AT, Beal DR, Leon EJ, May GE, Piaskowski SM, Furlott JR, Reed J et al (2008) Patterns of CD8+ immunodominance may influence the ability of Mamu-B*08-positive macaques to naturally control simian immunodeficiency virus SIVmac239 replication. J Virol 82:1723–1738PubMedCrossRefGoogle Scholar
  24. Mee ET, Badhan A, Karl JA, Wiseman RW, Cutler K, Knapp LA, Almond N, O’Connor DH et al (2009a) MHC haplotype frequencies in a UK breeding colony of Mauritian cynomolgus macaques mirror those found in a distinct population from the same geographic origin. J Med Primatol 38:1–14PubMedCrossRefGoogle Scholar
  25. Mee ET, Berry N, Ham C, Sauermann U, Maggiorella MT, Martinon F, Verschoor EJ, Heeney JL et al (2009b) Mhc haplotype H6 is associated with sustained control of SIVmac251 infection in Mauritian cynomolgus macaques. Immunogenetics 61:327–339PubMedCrossRefGoogle Scholar
  26. Mee ET, Berry N, Ham C, Aubertin A, Lines J, Hall J, Stebbings R, Page M et al (2010) Mhc haplotype M3 is associated with early control of SHIVsbg infection in Mauritian cynomolgus macaques. Tissue Antigens 76:223–229PubMedCrossRefGoogle Scholar
  27. Mitchell JL, Mee ET, Almond NM, Cutler K, Rose NJ (2011) Characterisation of MHC haplotypes in a breeding colony of Indonesian cynomolgus macaques reveals a high level of diversity. Immunogenetics. doi: 10.1007/s00251-011-0567-z
  28. Muhl T, Krawczak M, ten Haaft P, Hunsmann G, Sauermann U (2002) MHC class I alleles influence set-point viral load and survival time in simian immunodeficiency virus-infected rhesus monkeys. J Immunol 169:3438–3446PubMedGoogle Scholar
  29. Nakayama EE, Shioda T (2010) Anti-retroviral activity of TRIM5 alpha. Rev Med Virol 20:77–92PubMedCrossRefGoogle Scholar
  30. Nakayama EE, Miyoshi H, Nagai Y, Shioda T (2005) A specific region of 37 amino acid residues in the SPRY (B30.2) domain of African green monkey TRIM5alpha determines species-specific restriction of simian immunodeficiency virus SIVmac infection. J Virol 79:8870–8877PubMedCrossRefGoogle Scholar
  31. Newman RM, Hall L, Connole M, Chen GL, Sato S, Yuste E, Diehl W, Hunter E et al (2006) Balancing selection and the evolution of functional polymorphism in Old World monkey TRIM5alpha. Proc Natl Acad Sci USA 103:19134–19139PubMedCrossRefGoogle Scholar
  32. Newman RM, Hall L, Kirmaier A, Pozzi L-A, Pery E, Farzan M, O’Neil SP, Johnson W (2008) Evolution of a TRIM5-CypA splice isoform in Old World monkeys. PLoS Pathog 4:e1000003PubMedCrossRefGoogle Scholar
  33. Nisole S, Lynch C, Stoye JP, Yap MW (2004) A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1. Proc Natl Acad Sci USA 101:13324–13328PubMedCrossRefGoogle Scholar
  34. O’Connor SL, Blasky AJ, Pendley CJ, Becker EA, Wiseman RW, Karl JA, Hughes AL, O’Connor DH (2007) Comprehensive characterization of MHC class II haplotypes in Mauritian cynomolgus macaques. Immunogenetics 59:449–462PubMedCrossRefGoogle Scholar
  35. O’Connor SL, Lhost JJ, Becker EA, Detmer AM, Johnson RC, Macnair CE, Wiseman RW, Karl JA et al (2010) MHC heterozygote advantage in simian immunodeficiency virus-infected Mauritian cynomolgus macaques. Sci Transl Med 2:22ra18PubMedCrossRefGoogle Scholar
  36. Otting N, de Vos-Rouweler AJ, Heijmans CM, de Groot NG, Doxiadis GG, Bontrop RE (2007) MHC class I A region diversity and polymorphism in macaque species. Immunogenetics 59:367–375PubMedCrossRefGoogle Scholar
  37. Pendley CJ, Becker EA, Karl JA, Blasky AJ, Wiseman RW, Hughes AL, O’Connor SL, O’Connor DH (2008) MHC class I characterization of Indonesian cynomolgus macaques. Immunogenetics 60:339–351PubMedCrossRefGoogle Scholar
  38. Penedo MC, Bontrop RE, Heijmans CM, Otting N, Noort R, Rouweler AJ, de Groot N, de Groot NG et al (2005) Microsatellite typing of the rhesus macaque MHC region. Immunogenetics 57:198–209PubMedCrossRefGoogle Scholar
  39. Reynolds MR, Sacha JB, Weiler AM, Borchardt GJ, Glidden CE, Sheppard NC, Norante FA, Castrovinci PA et al (2011) TRIM5α genotype of Rhesus macaques affects acquisition of SIVsmE660 infection after repeated limiting-dose intrarectal challenge. J Virol 85:9637–9640. doi: 10.1128/JVI.05074-11 Google Scholar
  40. Sauermann U, Siddiqui R, Suh YS, Platzer M, Leuchte N, Meyer H, Matz-Rensing K, Stoiber H et al (2008) Mhc class I haplotypes associated with survival time in simian immunodeficiency virus (SIV)-infected rhesus macaques. Genes and Immunity 9:69–80PubMedCrossRefGoogle Scholar
  41. Sawyer SL, Wu LI, Emerman M, Malik HS (2005) Positive selection of primate TRIM5 alpha identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci USA 102:2832–2837PubMedCrossRefGoogle Scholar
  42. Sayah DM, Sokolskaja E, Berthoux L, Luban J (2004) Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430:569–573PubMedCrossRefGoogle Scholar
  43. Smith DG, McDonough J (2005) Mitochondrial DNA variation in Chinese and Indian rhesus macaques (Macaca mulatta). Am J Primatol 65:1–25PubMedCrossRefGoogle Scholar
  44. Stevison LS, Kohn MH (2008) Determining genetic background in captive stocks of cynomolgus macaques (Macaca fascicularis). J Med Primatol 37:311–317PubMedGoogle Scholar
  45. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5 alpha restricts HIV-1 infection in Old World monkeys. Nature 427:848–853PubMedCrossRefGoogle Scholar
  46. Stremlau M, Perron M, Welikala S, Sodroski J (2005) Species-specific variation in the B30.2(SPRY) domain of TRIM5 alpha determines the potency of human immunodeficiency virus restriction. J Virol 79:3139–3145PubMedCrossRefGoogle Scholar
  47. Stremlau M, Perron M, Lee M, Li Y, Song B, Javanbakht H, Diaz-Griffero F, Anderson DJ et al (2006) Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5 alpha restriction factor. Proc Natl Acad Sci USA 103:5514–5519PubMedCrossRefGoogle Scholar
  48. Sussman R,Tattersall I (1986) Distribution, abundance, and putative ecological strategy of Macaca fascicularis on the island of Mauritius, Southwestern Indian Ocean. Folia Primatologica 46:28–43Google Scholar
  49. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  50. Tosi AJ, Coke CS (2007) Comparative phylogenetics offer new insights into the biogeographic history of Macaca fascicularis and the origin of the Mauritian macaques. Mol Phylogenet Evol 42:498–504PubMedCrossRefGoogle Scholar
  51. Virgen CA, Kratovac Z, Bieniasz PD, Hatziioannou T (2008) Independent genesis of chimeric TRIM5-cyclophilin proteins in two primate species. Proc Natl Acad Sci USA 105:3563–3568PubMedCrossRefGoogle Scholar
  52. Wilson SJ, Webb BL, Maplanka C, Newman RM, Verschoor EJ, Heeney JL, Towers GJ (2008a) Rhesus macaque TRIM5 alleles have divergent antiretroviral specificities. J Virol 82:7243–7247PubMedCrossRefGoogle Scholar
  53. Wilson SJ, Webb BL, Ylinen LM, Verschoor E, Heeney JL, Towers GJ (2008b) Independent evolution of an antiviral TRIMCyp in rhesus macaques. Proc Natl Acad Sci U S A 105:3557–3562PubMedCrossRefGoogle Scholar
  54. Wiseman RW, Wojcechowskyj JA, Greene JM, Blasky AJ, Gopon T, Soma T, Friedrich TC, O’Connor SL et al (2007) Simian immunodeficiency virus SIVmac239 infection of major histocompatibility complex-identical cynomolgus macaques from Mauritius. J Virol 81:349–361PubMedCrossRefGoogle Scholar
  55. Wojcechowskyj JA, Yant LJ, Wiseman RW, O’Connor SL, O’Connor DH (2007) Control of simian immunodeficiency virus SIVmac239 is not predicted by inheritance of Mamu-B*17-containing haplotypes. J Virol 81:406–410PubMedCrossRefGoogle Scholar
  56. Ylinen LMJ, Price AJ, Rasaiyaah J, Hué S, Rose NJ, Marzetta F, James LC, Towers GJ (2010) Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity. PLoS Pathog 6:e1001062PubMedCrossRefGoogle Scholar
  57. Zhang ZQ, Fu TM, Casimiro DR, Davies ME, Liang X, Schleif WA, Handt L, Tussey L et al (2002) Mamu-A*01 allele-mediated attenuation of disease progression in simian-human immunodeficiency virus infection. J Virol 76:12845–12854PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Neil J. Berry
    • 1
  • Flavia Marzetta
    • 2
    • 3
  • Greg J. Towers
    • 2
  • Nicola J. Rose
    • 1
    Email author
  1. 1.Division of RetrovirologyNational Institute for Biological Standards and Control, A Centre of the Health Protection AgencyPotters BarUK
  2. 2.MRC Centre for Medical Molecular Virology, Division of Infection and ImmunityUniversity College LondonLondonUK
  3. 3.School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations